7大国内外自动驾驶仿真平台汇总

导读 /

自动驾驶汽车在真正商业化应用前,需要经历大量的道路测试才能达到商用要求。采用路测来优化自动驾驶算法耗费的时间和成本太高,且开放道路测试仍受到法规限制,极端交通条件和场景复现困难,测试安全存在隐患。目前,自动驾驶仿真测试已经被行业广泛接受, 自动驾驶算法测试大约 90% 通过仿真平台完成,9% 在测试场完成,1% 通过实际路测完成。

要想自动驾驶的仿真平台能实际为自动驾驶的路测发挥出相应的能力,必须要具备几种核心能力:真实还原测试场景、高效利用路采数据生成仿真场景、云端大规模并行加速等,使得仿真测试满足自动驾驶感知、决策规划和控制全栈算法的闭环。目前包括科技公司、车企、自动驾驶方案解决商、仿真软件企业、高校及科研机构等主体都在积极投身虚拟仿真平台的建设,相信在不久的未来将会对自动驾驶的商业化落地产生重要的推进作用。

Prescan由多个模块组成, 使用起来主要分为四个步骤: 搭建场景、添加传感器、 添加控制系统、 运行仿真。

  • 添加传感器: PreScan 支持种类丰富的传感器,包括理想传感器, V2X传感器,激光雷达,毫米波雷达, 超声波雷达, 单目和双目相机, 鱼眼相机等。用户可以根据自己的需要进行添加。

  • 添加控制系统: 可以通过MATLAB/ Simulink 建立控制模型,也可以和第三方动力学仿真模型(如 CarSim,VI-Grade,dSpace ASM 的车辆动力学模型)进行闭环控制。

  • 运行实验:3D 可视化查看器允许用户分析实验的结果,同时可以提供图片和动画生成功能。此外, 使用ControlDesk和LabView的界面可以用来自动运行实验批次的场景以及运行硬件在环模拟。

  • IPG Traffic:是交通环境模拟工具, 提供丰富的交通对象(车辆、 行人、 路标、交通灯、 道路施工建筑等) 模型。可实现对真实交通环境的仿真。测试车辆可识别交通对象并由此进行动作触发(如限速标志可触发车辆进行相应的减速动作)。

  • IPG Driver:先进的、 可自学习的驾驶员模型。可控制在各种行驶工况下的车辆, 实现诸如上坡起步、 入库泊车以及甩尾反打方向盘等操作。并能适应车辆的动力特性(驱动形式、 变速箱类型等) 、 道路摩擦系数、 风速、 交通环境状况, 调整驾驶策略。

CarMaker 作为平台软件, 可以与很多第三方软件进行集成, 如 ADAMS、 AVLCruise、 rFpro 等, 可利用各软件的优势进行联合仿真。同时 CarMaker 配套的硬件,提供了大量的板卡接口, 可以方便的与 ECU 或者传感器进行 HIL 测试。

CarSim 模型在计算机上运行的速度可以比实时快 10 倍,可以仿真车辆对驾驶员控制,3D 路面及空气动力学输入的响应,模拟结果高度逼近真实车辆,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性。CarSim 自带标准的 Matlab/Simulink 接口,可以方便的与 Matlab/Simulink 进行联合仿真,用于控制算法的开发,同时在仿真时可以产生大量数据结果用于后续使用 Matlab 或者 Excel 进行分析或可视化。CarSim 同时提供了 RT 版本,可以支持主流的 HIL 测试系统,如 dSpace 和 NI 的系统,方便的联合进行 HIL 仿真。

  • 无论是SIL,还是 HIL,无论是实时还是非实时的仿真, 无论是单机还是高性能计算的环境,VTD都提供了相应的解决方案。VTD运行时可模拟实时高质量的光影效果及路面反光、车身渲染、 雨雪雾天气渲染、 传感器成像渲染、大灯光视觉效果等。

Vissim的仿真可以达到很高的精度,包括微观的个体跟驰行为和变道行为,以及群体的合作和冲突。Vissim内置了多种分析手段,既能获得不同情况下的多种具体数据结果,也可以从高质量的三维可视化引擎获得直观的理解。无人驾驶算法也可以通过接入Vissim的方式使用模拟的高动态交通环境进行仿真测试。

CARLA也可以支持传感器和环境的灵活配置,它支持多摄像头,激光雷达,GPS等传感器,也可以调节环境的光照和天气。CARLA提供了简单的车辆和行人的自动行为模拟,也同时提供了一整套的 Python接口,可以对场景中的车辆,信 灯等进行控制,用来方便的和自动驾驶系统进行联合仿真,完成决策系统和端到端的强化学习训练。

以上就是目前国内外较知名的自动驾驶仿真平台的盘点,也欢迎大家在评论区补充其他用过的自动驾驶仿真平台。

参考链接:

[1] https://www.sohu.com/a/516344816_468661

合作联系方式:18515441838,标注“合作”。

欢迎加入智能交通群!标注”加群“。

eddecdc9faf55dc380872d8ab9ab5ca7.png

文章知识点与官方知识档案匹配,可进一步学习相关知识Java技能树首页概览93122 人正在系统学习中

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年1月16日
下一篇 2022年1月16日

相关推荐