AI/CV重磅干货,第一时间送达
现在,目标检测界明星模型YOLO,最新v5版本也可以在手机上玩儿了!
瞧~只需要区区几十毫秒,桌上的东西就全被检测出来了:
现在,想要在安卓设备上部署它,你需配备的环境如下:
-
主机 Ubuntu18.04
-
Docker
Tensorflow 2.4.0
PyTorch 1.7.0
OpenVino 2021.3
-
安卓APP
Android Studio 4.2.1
minSdkVersion 28
targetSdkVersion 29
TfLite 2.4.0
-
安卓设备
小米11 (内存 128GB/ RAM 8GB)
操作系统 MUI 12.5.8
git clone —recursive https://github.com/lp6m/yolov5s_android
使用Docke容器进行主机评估(host evaluation)和模型转换。
cd yolov5s_android docker build ./ -f ./docker/Dockerfile -t yolov5s_android docker run -it —gpus all -v :/workspace yolov5s_anrdoid bash
将app文件夹下的./tfliteu model/*.tflite复制到app/tfliteu yolov5u test/app/src/main/assets/目录下,就可在Android Studio上构建应用程序。
构建好的程序可以设置输入图像大小、推断精度和模型精度。
评估包括延时和准确度。
-
延迟时间
在小米11上测得,不包含预处理/后处理和数据传输的耗时。
结果如下:
不管模型精度是float32还是int8,时间都能控制在250ms以内,连半秒的时间都不到。
△ int8
大家可以和YOLOv5在电脑上的性能对比:
项目地址:
https://github.com/lp6m/yolov5s_android
上面项目代码下载
后台回复:安卓目标检测,即可下载上述代码
后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集
后台回复:ICCV2021,即可下载ICCV 2021论文和代码开源的论文合集
后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF
重磅!目标检测交流群成立
扫码添加CVer助手,可申请加入CVer-目标检测 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
文章知识点与官方知识档案匹配,可进一步学习相关知识OpenCV技能树首页概览11342 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!