一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

问耕 编译整理

Macbook这种轻薄的笔记本,是搞不了深度学习的。亚马逊P2云服务,会给堆积越来越多的账单,换个便宜的服务,训练时间又太长……

没办法,已经十多年没用过台式机的我,只能重新着手DIY装机,搭建一套自己的深度学习系统。以下是我的系统搭建和测试过程。

硬件清单

之前,我在AWS亚马逊云服务上的花费是每月70美元(约480元人民币)。按照使用两年计算,我给这套系统的总预算是1700美元(约11650元)。

GPU

肯定得买Nvidia,没有其他选择。买两块还是一块?我想了想,还是先买一个性能更好的,以后有钱了再增加。综合显存、带宽等因素,我最终选了GTX 1080 Ti,跟Titan X相比,性能差不了多少,但价格便宜不少。

CPU

虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。

内存

两条16GB容量的内存,总共是32GB。

硬盘

两块。

一块SSD硬盘运行操作系统和当前数据,我选的是MyDigitalSSD NVMe 480GB。一块速度较慢的2TB容量HDD硬盘存储大的数据集(例如ImageNet)。

主板

为了以后的拓展,我得选能支持两块GTX 1080 Ti的主板。最后的选择是:华硕TUF Z270。

电源

得为GPU何GPU们提供足够的电力供应。英特尔i5 7500功耗是65W,一块1080Ti需要250W(以后还想加一块),所以最后选择了Deepcool 750W Gold PSU。

机箱

我听从朋友的建议,选了Thermaltake N23机箱。只是没有LED灯,伤心。

组装

组装过程按下不表,装机也是个手艺,最后效果如下图所示。

安装软件

提示:如果你想装Windows系统,最好先安装Windows,再装Linux。要不然Windows会搞乱启动分区。

安装Ubuntu

大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?

  • OSX用户参考这里:

  • https://www.ubuntu.com/download/desktop/create-a-usb-stick-on-macos

  • Windows用户参考这里:

  • https://rufus.akeo.ie/

    我写这个教程的时候,Ubuntu 17.04版本刚刚发布,但是我选择了之前的16.04版本,因为老版本的相关文档可能更全一点。另外,我选择的是Ubuntu桌面版本,不过关闭了图形界面X,电脑启动会进入终端模式。

    如果需要图形界面,只需要输入:startx

    及时更新

    更新可以使用下面这个命令

    深度学习堆栈

    为了展开深度学习,我们需要如下软件来使用GPU:

  • GPU驱动:让操作系统和显卡可以对话

  • CUDA:能让GPU运行通用目的代码

  • CuDNN:CUDA之上的神经 络加速库

  • 深度学习框架:TensorFlow等

  • 安装GPU驱动

    最新的驱动,可以参考官

    http://nvidia.com/Download/index.aspx

    或者直接使用如下代码安装:

    安装CUDA

    可以从Nvidia下载CUDA,地址如下:

    https://developer.nvidia.com/cuda-downloads

    或者直接运行如下的代码:

    安装好CUDA之后,下面的代码能把CUDA添加到PATH变量:

    现在可以检验一下CUDA装好没有,运行如下代码即可:

    删除CUDA或GPU驱动,可以参考如下代码:

    安装CuDNN

    我用的是CuDNN 5.1,因为最新的TensorFlow不支持CuDNN 6。下载CuDNN,你需要创建一个免费的开发者账 。下载之后,用如下命令安装。

    Anaconda

    Anaconda是一个很棒的Python软件包管理器,我现在使用了Python 3.6版本,所以对应的使用Anaconda 3版本,安装如下:

    TensorFlow

    最流行的深度学习框架,安装:

    为了检查一下TensorFlow安装好没有,可以运行MNIST看看:

    应该能在训练过程中,看到loss的逐渐减少:

    Keras

    一个高级神经 络框架,安装非常简单:

    PyTorch

    深度学习框架届的新兵,但也值得推荐,安装命令:

    Jupyter notebook

    Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下:

    现在打开 http://localhost:8888 ,应该就能看到Jupyter的界面。

    我们可以把Jupyter设置成自动启动,使用crontab来设置。运行crontab -e,然后把如下代码添加在最后。

    测试

    现在基本上准备妥当了,是时候测试一下了。参加此次对比的几个选手是:

  • AWS P2实例GPU(K80)

  • AWS P2虚拟CPU

  • 英伟达GTX 1080 Ti

  • 英特尔i5 7500

  • MNIST多层感知器

    MNIST数据集由70000手写数字组成。我们在这个数据集上运行了一个使用多层感知器(MLP)的Keras案例,代码地址:

    https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py

    MLP的意思是只使用全连接的层,而不用卷积。这个模型在这个数据集上进行了20次训练,实现了超过98%的准确率。

    可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。

    CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。

    VGG微调

    为Kaggle猫狗识别竞赛而微调一个VGG 络。使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。代码如下:

    https://github.com/slavivanov/cats_dogs_kaggle

    这次1080 Ti比AWS P2 K80快5.5倍。CPU在这个环节的表现,最多慢了200倍。

    Wasserstein GAN

    生成对抗 络(GAN)用来训练模型产生图像。Wasserstein GAN是原始GAN的一个改进版。我这里用了一个PyTorch实现,代码地址:

    https://github.com/martinarjovsky/WassersteinGAN

    这个模型需要50步训练,CPU在这个训练中不予考虑。

    GTX 1080 Ti比AWS P2 K80快5.5倍。

    风格迁移

    最后一个测试是在TensorFlow上的风格迁移实现,代码地址:

    https://github.com/slavivanov/Style-Tranfer

    GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。

    好啦,关于万元打造一个深度学习系统的分享,就先到这里。

    各位端午节快乐。

    【完】

    招聘

    One More Thing…

    声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

    上一篇 2017年4月28日
    下一篇 2017年4月28日

    相关推荐