/*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为接触时间不长,对Merkle Tree的理解也不是很深入,如果有不对的地方,希望各位大神指正*/
Merkle Tree概念
如果从一个稳定的服务器进行下载,采用单一Hash是可取的。但如果数据源不稳定,一旦数据损坏,就需要重新下载,这种下载的效率是很低的。
2. Hash List
在点对点 络中作数据传输的时候,会同时从多个机器上下载数据,而且很多机器可以认为是不稳定或者不可信的。为了校验数据的完整性,更好的办法是把大的文件分割成小的数据块(例如,把分割成2K为单位的数据块)。这样的好处是,如果小块数据在传输过程中损坏了,那么只要重新下载这一快数据就行了,不用重新下载整个文件。
怎么确定小的数据块没有损坏哪需要为每个数据块做Hash。BT下载的时候,在下载到真正数据之前,我们会先下载一个Hash列表。那么问题又来了,怎么确定这个Hash列表本事是正确的哪案是把每个小块数据的Hash值拼到一起,然后对这个长字符串在作一次Hash运算,这样就得到Hash列表的根Hash(Top Hash or Root Hash)。下载数据的时候,首先从可信的数据源得到正确的根Hash,就可以用它来校验Hash列表了,然后通过校验后的Hash列表校验数据块。
Merkle Tree的特点
- MT是一种树,大多数是二叉树,也可以多叉树,无论是几叉树,它都具有树结构的所有特点;
- Merkle Tree的叶子节点的value是数据集合的单元数据或者单元数据HASH。
- 非叶子节点的value是根据它下面所有的叶子节点值,然后按照Hash算法计算而得出的。[4][5]
通常,加密的hash方法像SHA-2和MD5用来做hash。但如果仅仅防止数据不是蓄意的损坏或篡改,可以改用一些安全性低但效率高的校验和算法,如CRC。
Second Preimage Attack: Merkle tree的树根并不表示树的深度,这可能会导致second-preimage attack,即攻击者创建一个具有相同Merkle树根的虚假文档。一个简单的解决方法在Certificate Transparency中定义:当计算叶节点的hash时,在hash数据前加0x00。当计算内部节点是,在前面加0x01。另外一些实现限制hash tree的根,通过在hash值前面加深度前缀。因此,前缀每一步会减少,只有当到达叶子时前缀依然为正,提取的hash链才被定义为有效。
Merkle Tree的操作
1. 创建Merckle Tree
加入最底层有9个数据块。
step1:(红色线)对数据块做hash运算,Node0i = hash(Data0i), i=1,2,…,9
step2: (橙色线)相邻两个hash块串联,然后做hash运算,Node1((i+1)/2) = hash(Node0i+Node0(i+1)), i=1,3,5,7;对于i=9, Node1((i+1)/2) = hash(Node0i)
step3: (黄色线)重复step2
step4:(绿色线)重复step2
step5:(蓝色线)重复step2,生成Merkle Tree Root
从上图可得知,叶子节点node7的value = hash(f1),是f1文件的HASH;而其父亲节点node3的value = hash(v7, v8),也就是其子节点node7 node8的值得HASH。就是这样表示一个层级运算关系。root节点的value其实是所有叶子节点的value的唯一特征。
假如A上的文件5与B上的不一样。我们怎么通过两个机器的merkle treee信息找到不相同的文件这个比较检索过程如下:
Step1. 首先比较v0是否相同,如果不同,检索其孩子node1和node2.
Step2. v1 相同,v2不同。检索node2的孩子node5 node6;
Step3. v5不同,v6相同,检索比较node5的孩子node 11 和node 12
Step4. v11不同,v12相同。node 11为叶子节点,获取其目录信息。
Step5. 检索比较完毕。
以上过程的理论复杂度是Log(N)。过程描述图如下:
插入数据块0后(考虑数据块的位置),Merkle Tree的结构是这样的:
根据[6]中回答者所说,Merkle Tree的插入和删除操作其实是一个工程上的问题,不同问题会有不同的插入方法。如果要确保树是平衡的或者是树高是log(n)的,可以用任何的标准的平衡二叉树的模式,如AVL树,红黑树,伸展树,2-3树等。这些平衡二叉树的更新模式可以在O(lgn)时间内完成插入操作,并且能保证树高是O(lgn)的。那么很容易可以看出更新所有的Merkle Hash可以在O((lgn)2)时间内完成(对于每个节点如要更新从它到树根O(lgn)个节点,而为了满足树高的要求需要更新O(lgn)个节点)。如果仔细分析的话,更新所有的hash实际上可以在O(lgn)时间内完成,因为要改变的所有节点都是相关联的,即他们要不是都在从某个叶节点到树根的一条路径上,或者这种情况相近。
[6]的回答者说实际上Merkle Tree的结构(是否平衡,树高限制多少)在大多数应用中并不重要,而且保持数据块的顺序也在大多数应用中也不需要。因此,可以根据具体应用的情况,设计自己的插入和删除操作。一个通用的Merkle Tree插入删除操作是没有意义的。
Merkle Tree的应用
1. 数字签名
最初Merkle Tree目的是高效的处理Lamport one-time signatures。 每一个Lamport key只能被用来签名一个消息,但是与Merkle tree结合可以来签名多条Merkle。这种方法成为了一种高效的数字签名框架,即Merkle Signature Scheme。
2. P2P 络
在P2P 络中,Merkle Tree用来确保从其他节点接受的数据块没有损坏且没有被替换,甚至检查其他节点不会欺骗或者发布虚假的块。大家所熟悉的BT下载就是采用了P2P技术来让客户端之间进行数据传输,一来可以加快数据下载速度,二来减轻下载服务器的负担。BT即BitTorrent,是一种中心索引式的P2P文件分分析通信协议[7]。
要进下载必须从中心索引服务器获取一个扩展名为torrent的索引文件(即大家所说的种子),torrent文件包含了要共享文件的信息,包括文件名,大小,文件的Hash信息和一个指向Tracker的URL[8]。Torrent文件中的Hash信息是每一块要下载的文件内容的加密摘要,这些摘要也可运行在下载的时候进行验证。大的torrent文件是Web服务器的瓶颈,而且也不能直接被包含在RSS或gossiped around(用流言传播协议进行传播)。一个相关的问题是大数据块的使用,因为为了保持torrent文件的非常小,那么数据块Hash的数量也得很小,这就意味着每个数据块相对较大。大数据块影响节点之间进行交易的效率,因为只有当大数据块全部下载下来并校验通过后,才能与其他节点进行交易。
就解决上面两个问题是用一个简单的Merkle Tree代替Hash List。设计一个层数足够多的满二叉树,叶节点是数据块的Hash,不足的叶节点用0来代替。上层的节点是其对应孩子节点串联的hash。Hash算法和普通torrent一样采用SHA1。其数据传输过程和第一节中描述的类似。
文献[10]提出了一种基于Merkle Tree的远程验证机制,其核心是完整性度量值哈希树。
首先,RAMT 在内核中维护的不再是一张完整性度量值列表(ML),而是一棵完整性度量值哈希树(integrity measurement hash tree,简称IMHT).其中,IMHT的叶子结点存储的数据对象是待验证计算平台上被度量的各种程序的完整性哈希值,而其内部结点则依据Merkle 哈希树的构建规则由子结点的连接的哈希值动态生成。
其次,为了维护IMHT 叶子结点的完整性,RAMT 需要使用TPM 中的一段存储器来保存IMHT 可信根哈希的值。
再次,RAMT 的完整性验证过程基于认证路径(authentication path)实施.认证路径是指IMHT 上从待验证叶子结点到根哈希的路径。
4. IPFS
IPFS(InterPlanetary File System)是很多NB的互联 技术的综合体,如DHT( Distributed HashTable,分布式哈希表),Git版本控制系统,Bittorrent等。它创建了一个P2P的集群,这个集群允许IPFS对象的交换。全部的IPFS对象形成了一个被称作Merkle DAG的加密认证数据结构。
IPFS对象是一个含有两个域的数据结构:
- Data – 非结构的二进制数据,大小小于256kB
- Links – 一个Link数据结构的数组。IPFS对象通过他们链接到其他对象
Link数据结构包含三个域:
- Name – Link的名字
- Hash – Link链接到对象的Hash
- Size – Link链接到对象的累积大小,包括它的Links
对于小文件(<256kB),是一个没有Links的IPFS对象。
IPFS可以表示Git使用的数据结构,Git commit object。Commit Object主要的特点是他有一个或多个名为’parent0’和‘parent1’等的链接(这些链接指向前一个版本),以及一个名为object的对象(在Git中成为tree)指向引用这个commit的文件系统结构。
而这样做的好处,也就是中本聪描述到的“简化支付验证”(Simplified Payment Verification,SPV)的概念:一个“轻客户端”(light client)可以仅下载链的区块头即每个区块中的80byte的数据块,仅包含五个元素,而不是下载每一笔交易以及每一个区块:
- 上一区块头的哈希值
- 时间戳
- 挖矿难度值
- 工作量证明随机数(nonce)
- 包含该区块交易的Merkle Tree的根哈希
如果客户端想要确认一个交易的状态,它只需简单的发起一个Merkle proof请求,这个请求显示出这个特定的交易在Merkle trees的一个之中,而且这个Merkle Tree的树根在主链的一个区块头中。
但是Bitcoin的轻客户端有它的局限。一个局限是,尽管它可以证明包含的交易,但是它不能进行涉及当前状态的证明(如数字资产的持有,名称注册,金融合约的状态等)。
Bitcoin如何查询你当前有多少币个比特币轻客户端,可以使用一种协议,它涉及查询多个节点,并相信其中至少会有一个节点会通知你,关于你的地址中任何特定的交易支出,而这可以让你实现更多的应用。但对于其他更为复杂的应用而言,这些远远是不够的。一笔交易影响的确切性质(precise nature),可以取决于此前的几笔交易,而这些交易本身则依赖于更为前面的交易,所以最终你可以验证整个链上的每一笔交易。为了解决这个问题,Ethereum的Merkle Tree的概念,会更进一步。
Ethereum的Merkle Proof
每个以太坊区块头不是包括一个Merkle树,而是为三种对象设计的三棵树:
- 交易Transaction
- 收据Receipts(本质上是显示每个交易影响的多块数据)
- 状态State
MPT(Merkle Patricia Trees)
前面我们提到,最为简单的一种Merkle Tree大多数情况下都是一棵二叉树。然而,Ethereum所使用的Merkle Tree则更为复杂,我们称之为“梅克尔.帕特里夏树”(Merkle Patricia tree)。
但是,对于状态树,情况会更复杂些。以太坊中的状态树基本上包含了一个键值映射,其中的键是地址,而值包括账户的声明、余额、随机数nounce、代码以及每一个账户的存储(其中存储本身就是一颗树)。例如,摩登测试 络(the Morden testnet )的创始状态如下所示:

然而,不同于交易历史记录,状态树需要经常地进行更新:账户余额和账户的随机数nonce经常会更变,更重要的是,新的账户会频繁地插入,存储的键( key)也会经常被插入以及删除。我们需要这样的数据结构,它能在一次插入、更新、删除操作后快速计算到树根,而不需要重新计算整个树的Hash。这种数据结构同样得包括两个非常好的第二特征:
- 树的深度是有限制的,即使考虑攻击者会故意地制造一些交易,使得这颗树尽可能地深。不然,攻击者可以通过操纵树的深度,执行拒绝服务攻击(DOS attack),使得更新变得极其缓慢。
- 树的根只取决于数据,和其中的更新顺序无关。换个顺序进行更新,甚至重新从头计算树,并不会改变根。
MPT是最接近同时满足上面的性质的的数据结构。MPT的工作原理的最简单的解释是,值通过键来存储,键被编码到搜索树必须要经过的路径中。每个节点有16个孩子,因此路径又16进制的编码决定:例如,键‘dog’的16进制编码是6 4 6 15 6 7,所以从root开始到第六个分支,然后到第四个,再到第六个,再到第十五个,这样依次进行到达树的叶子。
在实践中,当树稀少时也会有一些额外的优化,我们会使过程更为有效,但这是基本的原则。
6. 其他应用
用到Merkle Tree的应用还有很多,比如Git,Amazon Dynamo,Apache Wave Protocol,Tahoe-LAFS backup system,Certificate Transparency framework,NoSQL systems like Apache Cassadra and Riak等
参考
[1] https://en.wikipedia.org/wiki/Merkle_tree
[2] https://en.wikipedia.org/wiki/Hash_function#Hash_function_algorithms
[3] http://www.jianshu.com/p/458e5890662f
[4] http://blog.csdn.net/xtu_xiaoxin/article/details/8148237
[5] http://blog.csdn.net/yuanrxdu/article/details/22474697tm_source=tuicool&utm_medium=referral
[6] http://crypto.stackexchange.com/questions/22669/merkle-hash-tree-updates
[7] https://en.wikipedia.org/wiki/BitTorrent
[8] 梁成仁, 李健勇, 黄道颖, 等. 基于 Merkle 树的 BT 系统 torrent 文件优化策略[J]. 计算机工程, 2008, 34(3): 85-87.
[9] http://bittorrent.org/beps/bep_0030.html
[10] 徐梓耀, 贺也平, 邓灵莉. 一种保护隐私的高效远程验证机制[J]. Journal of Software, 2011, 22(2).
[11] http://whatdoesthequantsay.com/2015/09/13/ipfs-introduction-by-example/
[12] https://www.weusecoins.com/what-is-a-merkle-tree/
[13] http://www.8btc.com/merkling-in-ethereum
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!