上图中,小圆点代表电 机的短接触,长条代表电 机的长接触(即发 员按住继电器,让其保持闭合的时间大概为短接触的三倍),不同的长短组合代表不同的字符和数字(下面是老式电 机的示意图,看了这张图应该能知道什么是接触了)。
摩尔斯编码特别能体现信息转换的两个原则。首先,只有短接触和长接触两种方式,接收电 的电 员很容易识别,不太会出现偏差;然后,按照文章里英文字母出现的概率来进行编码,最常见的字母e用最简洁的一个短接触表示。这样做的结果,就是编码的电 长度相对较短且容易识别,传输起来就又快又准。
信息论的基本应用
No.3
传统的应用系统在表达物理世界时,无论是文字表达还是图形表达,都是用抽象、概括、推理等手段将物理世界按一定的方式进行了转换,造成的结果就是用户盲人摸象一般对管理对象进行了不同的解读。而数字孪生系统采用的是基于物理世界、三维的、交互式的图形界面,相当于让用户身临其境一样的来到现场面对真实的管理对象,这种情况下就很难产生二义性。
概括来说,数字孪生系统及其符合信息转换中的第一个原则,容易识别。这个特点使得代表物理世界的信息在到达传输路径最终节点的时候(这个最终节点就是人)能够被忠实的还原,几乎不会出现失真,所有用户都能够全面、一致、快捷地理解信息代表的含义。可以说,这是人类目前所有信息传递方式中辨识度最高的,没有之一。
至于高效编码原则,在数字孪生系统中应用比较广泛的就是无损压缩和模型缓存。
当用户第一次进入系统或者模型更新的时候,都要从服务器下载模型。这时候,如果 络带宽不够(广域 尤为明显),就会导致系统加载缓慢。对于开发者而言, 络带宽是不可控因素,所以他们通常都使用无损压缩的方式,将物体模型文件和模型上的贴图文件进行压缩,减少了 络数据的传输量,进而降低了系统加载的时间。
内存由于存取数据速度上的优势,是程序员的最爱。但是基于安全的考虑,浏览器本身所能使用的内存是有限的(而普通的可执行程序能使用几乎所有的可用物理资源),所以前端开发人员的重要任务之一就是如何把有限的内存发挥最大的作用。在数字孪生系统中,通常的做法是将模型及相关数据进行缓存,当然也是利用高效编码的原理,将三维场景中的各类模型按数量多少进行排序,再决定哪些模型文件放到内存中,保证这些频繁出现的模型不需要再去硬盘上读取,节省加载的时间。
信息论的扩展应用
No.4
信息在传输的过程中,由于人为因素或者年代久远,要么增加了一些干扰的噪声,要么缺失了一些重要的片段,人们不太清楚信息究竟要表达什么含义,也就是说信息出现了不确定性。对于这个问题,在众多的解决方案中,信息论就是很有效的手段之一。
4.1 信息的矢量化
很多优秀的知识学习者都提到了一个经验,想要快速学习某个领域的知识的话,要至少找两篇由这个领域中的两位观点相反的佼佼者编写的文章或者书籍来看。这个经验映射着这样一个道理,如果要知晓事物的本质,就要尽可能多维度地了解它的外在特性,通过交叉验证的方式发现真相。如同我们要了解历史的真相,仅仅靠读史书是不够的,再多的史书也只是在文字记载这样一个维度上去还原历史,我们还要依赖于考古学家的文物发现去从另一个维度验证。
在数字孪生系统中,依赖于三维可视化技术,被管对象就是以多种维度呈现在用户面前。
举个停车场可视化的例子,传统的系统大概能告诉用户两条信息,一是车位总数,二是空闲车位数量。这样的信息可以让管理员或者车主采取二选一的行动,一是有车位,你可以进去停,二是没车位,你别进去了,但这样的信息包含的不确定内容太多了,对车主或者为车主提供服务的停车场管理员来说极不方便。
但是数字孪生系统中的停车场就不一样了,管理员或者车主不仅仅可以看到是否有车位,还可以看到哪里有车位或者残疾人车位,哪些车位方便停车,哪个区域的车位多一些,甚至能够以第一人称的视角引导车主到达目标车位。如果停车场与建筑物在同一场景中,还可以了解到哪些车位离电梯近一些,哪些车位离车主准备前往的办公区域或者商业区域近一些,基本上所有人群的需求都能被覆盖到。
比起传统系统单一的数量维度,数字孪生系统还以可视化方式提供了空间位置维度、动态第一人称视角维度、参照物维度、车位类型维度、同质区域维度等等,维度的增加让信息的确定性越来越高,大大提高了信息的价值。这就是信息矢量化产生的巨大效用。
4.2 信息的冗余度
1997年8月,一架大韩航空客机在接近关岛机场时撞上尼米兹山山腰,226人死亡。事后调查发现,事故发生前客机第一副驾驶和飞机工程师都曾用韩语表达过反对目测着陆的暗示,而机长没有意识到暗示的内容。
作为补救措施,大韩航空邀请达美航空的戴维瑞博来帮助管理运营。格瑞博空降来的第一件事就是提高所有航班机组的英语能力,并将工作语言规定为英语。
造成这场空难的原因很多,比如机长的能力低下与偏执,比如韩国企业文化中的权力至上氛围而不敢对机长提出质疑而导致的表达过于委婉等等。但其中有一个很重要的原因就是英语的这种表达方式比起东亚语言来说,信息冗余度更高,更容易让人理解而不产生误会和信息缺失。
什么叫信息冗余度高呢个例子,英文版和中文版的圣经通过哈夫曼编码(可以理解成一种把信息高度抽象化,把废话全部去掉的无损压缩算法)后的长度几乎是一样的,但如果不压缩的话,英文版的圣经的厚度几乎是中文版的1.5倍。这个结论充分说明了对于同样一个意思的表达,英文的表达方式是冗余量较高的。即便不做量化的对比,大家在英语考试时做中英文互译对此应该也深有体会。在此我们不去探究为何英语冗余度高,我们只需要知道这样一个信息论中的结论即可,就是为了提高信息传递的有效性,必须保持信息的一定冗余度。上文中说到的大韩航空替换工作语言,其实也是应用到了这个结论,从而保证信息传递的有效性,降低沟通失误导致灾难发生的可能性。
数字孪生系统中,关于物体的空间属性(比如长宽高和坐标信息),不仅仅有传统的数字形式,还有物体的三维模型这样一个等同于空间属性数据的冗余表达形式。你可以想象这样的一些场景,一台核磁共振仪穿墙而过,同时出现在两个房间里;一个机柜中的上下两台服务器有一部分重叠在一起。这种现实世界中不可能发生的情况在数字孪生系统中出现了,为什么呢为系统的呈现是基于空间属性数据的,作为资产管理员便很容易的从其中发现资产数据存在的问题进而进行完善,这就是数字孪生系统中,信息冗余度带来的好处。
信息论的未来应用
No.5
大家都会有这样的体验,当你戴着耳机在一个嘈杂的环境中听歌的时候,为了听清楚歌曲,不得不提高音量,但是长时间的高音量对耳朵是有损伤的。为此出现了一种主动降噪耳机,这种耳机中内置的芯片能够过滤掉外界的噪音,只让人想听的音乐进入耳朵。它是怎么做到的呢/p>
这里需要引入一个新概念,叫“傅里叶变换”。这个概念详细解释起来对于普通人来说有点晦涩,概括而言,就是把不容易识别的信息通过一种等价方式的转换,从而变得容易识别和处理。我们知道很多关于等价转换的例子。比如曹冲称象的故事中,就是把不容易测量重量的大象的转换成可以测量的很多块石头;比如天体物理学家判断宇宙中其他星球的物质成分,并不需要降落到其上去采样,而仅仅通过望远镜的观测和光谱分析即可,正是因为物质的化学成分与其光谱之间是等价关系。同样的道理,主动降噪耳机能够通过傅里叶变换,把外界声音等价变成一个个不同频率声波的组合,并分析、发现并抵消声波组合中的属于噪音频率的声波,最后让耳朵听到正常的音乐。
傅里叶变换是信息论体系中很重要的一根支柱,在数字孪生系统中也有很多的应用场景,尤其是自动建模这部分。作为数字孪生领域的领头羊,优锘科技已经在CAD图纸、IT系统架构图和二维物体图片的自动识别和建模方面应用了傅里叶变换算法,并取得了一些重大突破,原理也是把上述三类数据进行等价转换,把其中的噪音数据过滤后再进行处理。只是,这其中还要牵涉到大数据训练和人工智能的模式识别等诸多的技术领域,并不是一蹴而就。
优锘科技一直在畅想一个由自动化采集、自动化生成和自动化连接组成的三位一体的新一代数字孪生世界。现在,以倾斜摄影为代表的的自动化采集技术和以5G通信为代表的自动化连接技术已经初见成效,而自动化建模则是我们进入新世界要跨过的最后一道难关。
技术在进步,人也在进步,对于我们优锘人来说,还有什么是不可能的呢/p> 相关资源:Veneer:文件屏蔽软件-开源-其它代码类资源-CSDN文库
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!