?PIDC infers gene regulatory networks from single-cell tranomic data
?PIDC指数 是从单细胞转录组数据中进行统计推断(贝叶斯估计) 获得出基因调控 络关联图谱的定量值。
?Multivariate information measures and context in PIDC improve network inference
?在PIDC中中,多维变量信息的度量和上下游优化的 络结点联系推理技术。
?Heterogeneity in single-cell data carries information about gene-gene interactions
?单细胞数据的异质性包含了基因间相互作用可能的信息
?Fast, efficient, open-source software is made freely available
?该程序快速、高效、开源,而且代码是免费的。
While single-cell gene expression experiments present new challenges for data processing, the cell-to-cell variability observed also reveals statistical relationships that can be used by information theory.
尽管单细胞基因表达实验数据量和复杂度对数据处理提出了新的挑战,但是细胞与细胞间的差异 可以根据信息论的原理 揭示其间的宏观统计联系。
Here, we use multivariate information theory to explore the statistical dependencies between triplets of genes in single-cell gene expression datasets.
在本项工作中,我们使用多元信息理论来探索单细胞基因表达数据集中,三基因关联的统计依赖关系。
We develop PIDC, a fast, efficient algorithm that uses partial information decomposition (PID) to identify regulatory relationships between genes.
我们开发了PIDC指数,一种快速高效的算法指数,利用信息矩阵重要部分矩阵降维分解(PID)的方法来 识别基因之间的调控关系。
We thoroughly evaluate the performance of our algorithm and demonstrate that the higher-order information captured by PIDC allows it to outperform pairwise mutual information-based algorithms when recovering true relationships present in simulated data.
我们对算法的性能进行了彻底的评估,在模拟数据计算中,证明了PIDC捕获的高阶信息可以恢复真实关系的情况,该特性优于基于“相互比对”为基础的信息算法。
We also infer gene regulatory networks from three experimental single-cell datasets and illustrate how network context, choices made during analysis, and sources of variability affect network inference.
我们还从三个基因调控实验单的单元数据集中进行基因调控 络的数据推断,并阐述在分析过程中不同基因的选择以及表达数据差异 对 络拓扑变换的影响。
PIDC tutorials and open-source software for estimating PID are available.
PID软件以及PIDC教程在 络是开源。
PIDC should facilitate the identification of putative functional relationships and mechanistic hypotheses from single-cell tranomic data.
PIDC指数应该有助于从单细胞转录组数据中识别出:假定有功能关系的基因组合以及潜在的分子机理。
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!