无人驾驶的技术安全风险可以避免吗?

今年6月底,特斯拉自动驾驶汽车发生了一起致命意外,一时间无人驾驶的安全性被推到了风口浪尖。一直以来,虽然各个自动驾驶开发企业都都在不断的公开自动汽车的路测数据,但是自动驾驶的安全性问题一直是业内外认识争论的关键点,也是自动驾驶汽车能否顺利上路和顺利获得乘客、用户使用的关键。今日Uber更是收购了才成立了8个月的明星自动卡车公司Otto,并且在这几天陆续在没有有Uber的自动驾驶汽车上路了。 

Tesla Car Accident


从软件算法层面,目前全球范围内,致力于实现安全的人工高智能(Safe AI)的组织中,最出名的莫过于OpenAI,他们致力于让人工智能不要范致命的错误。

在人类的眼里,可能图像中一些细微的变化不糊影响我们去判断一个事物,但是在机器的眼里,可能就会完全看作是两个事物(fooling samples),从而做出不同的应对行为,这种情况特别容易出现在通过深度学习训练目标以及在单目摄像头下的视频数据。

特斯拉的事故不仅暴露了自动驾驶技术目前在软件算法上的短板,同时也暴露了在硬件技术的短板。

从硬件设备层面,像Model S采用的单目摄像头对于立体及大面积平面物体的识别存在硬伤、毫米波雷达存在识别区间限制、以及在极端情况下对于综合情景的取舍及冗余判断等问题。

   所以,事故对自动驾驶领域的硬件及算法产生促进,对于双目/广角摄像头、毫米波雷达、激光雷达的综合采用将可望迎来破冰。特别是对于之前成本较高的激光雷达+多摄像头方案会带来推动作用。另外,特斯拉的事故如果采取的是多探测器冗余判断模式,完全可以避免。所以,出于安全性考虑,N H T SA (美国高速公路安全管理局)也有可能会在硬件配置及系统要求上,敦促相关部门出台较高门槛及规定,这对于行业而言,意味着单车附加值的提升。


虽然,自动驾驶安全隐患仍然存在着,也不可避免的存在的风险问题,但是,有一点可以确定的是,对比起目前94%的交通事故是人为原因造成的,自动驾驶的持续研究和发展必然是对人类的人身安全有着重要的意义。


———————————————————————————————————-

P.S. 组织了一个计算机视觉的开发者交流微信群,目标是汇集【计算机视觉,图像处理,3D图像,视频处理,深度学习,机器学习】的开发者,一起分享开发经验,共同探讨技术,有兴趣入群的可以加我微信(WeChat: LaurenLuoYun),请注明“姓名-公司/学校-技术方向”,谢谢。

文章知识点与官方知识档案匹配,可进一步学习相关知识Python入门技能树人工智能机器学习工具包Scikit-learn213235 人正在系统学习中

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2016年7月22日
下一篇 2016年7月22日

相关推荐