点击上方“小白学视觉”,选择加”星标“或“置顶”
重磅干货,第一时间送达
图:某无人驾驶车软件系统架构
除了对外界进行认知之外,机器还必须要能够进行学习。深度学习是无人驾驶技术成功地基础,深度学习是源于人工神经 络的一种高效的机器学习方法。深度学习可以提高汽车识别道路、行人、障碍物等的时间效率,并保障了识别的正确率。通过大量数据的训练之后,汽车可以将收集到的图形,电磁波等信息转换为可用的数据,利用深度学习算法实现无人驾驶。
在无人驾驶汽车通过雷达等收集到数据时,对于原始的训练数据要首先进行数据的预处理化。计算均值并对数据的均值做均值标准化、对原始数据做主成分分析、使用PCA白化或ZCA白化。例如:将激光传感器收集到的时间数据转换为车与物体之间的距离;将车载摄像头拍摄到的照片信息转换为对路障的判断,对红绿灯的判断,对行人的判断等;雷达探测到的数据转换为各个物体之间的距离。
将深度学习应用于无人驾驶汽车中,主要包含以下步骤:
1. 准备数据,对数据进行预处理再选用合适的数据结构存储训练数据和测试元组;
2. 输入大量数据对第一层进行无监督学习;
3. 通过第一层对数据进行聚类,将相近的数据划分为同一类,随机进行判断;
4. 运用监督学习调整第二层中各个节点的阀值,提高第二层数据输入的正确性;
5. 用大量的数据对每一层 络进行无监督学习,并且每次用无监督学习只训练一层,将其训练结果作为其更高一层的输入。
6. 输入之后用监督学习去调整所有层。
人工智能在自动驾驶信息共享中的应用
-
首先,利用无线 络进行车与车之间的信息共享。通过专用通道,一辆汽车可以把自己的位置、路况实时分享给队里的其它汽车,以便其它车辆的自动驾驶系统,在收到信息后做出相应调整。
-
其次,是3D路况感应,车辆将结合超声波传感器、摄像机、雷达和激光测距等技术,检测出汽车前方约5米内地形地貌,判断前方是柏油路还是碎石、草地、沙滩等路面,根据地形自动改变汽车设置。
-
另外,汽车还将能进行自动变速,一旦探测到地形发生改变,可以自动减速,路面恢复正常后,再回到原先状态。
汽车信息共享所收集到的交通信息量将非常巨大,如果不对这些数据进行有效处理和利用,就会迅速被信息所湮没。因此需要采用数据挖掘、人工智能等方式提取有效信息,同时过滤掉无用信息。考虑到车辆行驶过程中需要依赖的信息具有很大的时间和空间关联性,因此有些信息的处理需要非常及时。
人工智能应用于自动驾驶技术中的优势
人工智能算法更侧重于学习功能,其他算法更侧重于计算功能。学习是智能的重要体现,学习功能是人工智能的重要特征,现阶段大多人工智能技术还处在学的阶段。如前文所说,无人驾驶实际上是类人驾驶,是智能车向人类驾驶员学习如何感知交通环境,如何利用已有的知识和驾驶经验进行决策和规划,如何熟练地控制方向盘、油门和刹车。
从感知、认知、行为三个方面看,感知部分难度最大,人工智能技术应用最多。感知技术依赖于传感器,比如摄像头,由于其成本低,在产业界倍受青睐。以色列一家名叫Mobileye的公司在交通图像识别领域做得非常好,它通过一个摄像头可以完成交通标线识别、交通信 灯识别、行人检测,甚至可以区别前方是自行车、汽车还是卡车。
人工智能技术在图像识别领域的成功应用莫过于深度学习,近几年研究人员通过卷积神经 络和其它深度学习模型对图像样本进行训练,大大提高了识别准确率。Mobileye目前取得的成果,正是得益于该公司很早就将深度学习当作一项核心技术进行研究。认知与控制方面,主要使用人工智能领域中的传统机器学习技术,通过学习人类驾驶员的驾驶行为建立驾驶员模型,学习人的方式驾驶汽车。
无人驾驶技术所面临的挑战和展望
在目前交通出行状况越来越恶劣的背景下,“无人驾驶”汽车的商业化前景,还受很多因素制约。
主要有:
1. 法规障碍
2. 不同品牌车型间建立共同协议,行业缺少规范和标准
3. 基础道路状况,标识和信息准确性,信息 络的安全性
4. 难以承受的高昂成本
此外,“无人驾驶”汽车的一个最大特点,就是车辆 络化、信息化程度极高,而这也对电脑系统的安全问题形成极大挑战。一旦遇到电脑程序错乱或者信息 络被入侵的情况,如何继续保证自身车辆以及周围其他车辆的行驶安全,这同样是未来急需解决的问题。虽然无人驾驶技术还存在着很多挑战,但是无人驾驶难在感知,重在“学习”,无人驾驶的技术水平迟早会超过人类,因为稳、准、快是机器的先天优势,人类无法与之比拟。
驾驶有时并不是负担,相反是一种乐趣,体现了人类拓展自身极限的能力。笔者相信,完全的无人驾驶也许有些遥远,但随着机器学习算法的提升和应用的挖掘,更接地气人机和谐共驾指日可待。不管在自动驾驶这条路上有多少困难,但我相信总有它出现在城市道路上的一天,技术的发展充满激情与动力。在不久的将来,也许自动驾驶会成为主流。
小白团队出品:零基础精通语义分割↓↓↓

文章知识点与官方知识档案匹配,可进一步学习相关知识OpenCV技能树OpenCV中的深度学习图像分类11385 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!