自动驾驶领域目前最强的MSF(多传感器融合)定位算法,再次被攻破了。
攻击之下,平均30秒内,正常行驶中的自动驾驶汽车就撞上了马路牙子:
根据分析日志,研究人员发现,在这种情况下,LiDAR输入实际上变成了离群值,无法提供修正。
也就是说,被忽悠瘸了的GPS在某种程度上成了自动驾驶汽车定位的主导输入源,会导致多传感器交叉验证的机制失效。
研究人员称此为接管效应(take-off effect)。
FusionRipper攻击方法
基于接管效应,研究人员设计了名为FusionRipper的攻击方法,能够抓住接管漏洞出现的窗口期,对行驶中的自动驾驶车辆进行攻击。
攻击方式有两种:
其一,是车道偏离攻击。目的是让目标自动驾驶汽车向左或向右偏离车道,直至驶出路面。
其二,是错道攻击。目的是让目标自动驾驶汽车向左偏离,驶入逆向车道。
攻击一旦成功,造成的危险是显而易见的:撞上马路牙子,掉下公路悬崖,撞上对向来车……
也就是说,在2分钟内,如果攻击算法让车子偏离了车道、或是开到了逆向车道上,那么攻击就成功了。
如下图,两种攻击方式分别可以实现至少97%和91%的成功率。
然而,当普通的随机攻击算法遇上BA-MSF后,就「蔫了」,从图中显示的数据结果来看,成功让汽车偏离车道、或是逆向行驶的几率,只有3.7%和0.2%。
相对的,FusionRipper算法却依旧保持了强劲的势头。
即使在面对BA-MSF时,FusionRipper也有97%的几率让自动驾驶汽车偏离轨道。
事实上,由于这种算法对攻击参数的选择非常敏感,研究者们提出了一种离线方法,可以在实际攻击前选出高效的攻击参数。
当然,这让攻击条件本身也受到限制,攻击者需要拥有与受害者型 相同的自动驾驶车辆,也就是需要有相同的传感器组,攻击才能被完成。
如下图,测试结果表明,这种离线方法在攻击时,最终能成功实现偏离车道和发生逆行的概率都至少能达到80%以上。
当然,要实现这样的攻击,成本其实也并不低。
所以,研究者表示,文中提到这种攻击算法可能被应用的一种比较现实的情况,是攻击者是自动驾驶行业的竞争对手。
瞄准最强自动驾驶开源系统
不挑特斯拉,不选谷歌,团队这次专门挑了百度的Apollo下手,原因何在p>
对此,论文一作、UCI在读博士生沈骏杰表示,选择Apollo的原因,其实比较现实:它的系统开源。
他们在实验时,特意将Apollo作为一个案例,并发现通过特定的GPD信 欺骗方式,可以让汽车在某些情况下发生大于10m以上的偏移,并且这种攻击成功率在90%以上。
这种攻击有现实可行性吗h1>
百度Apollo也同样和研究团队进行了一系列沟通。
对于这项技术,Apollo官方回应,在接到研究 告的第一时间,出于对人身安全、无人车安全的极大重视,他们已经在现实环境中对实车进行了测试。
不过,与研究团队给出的仿真结果不同,Apollo的工程师发现FusionRipper对实车并没有影响。

Apollo方面还进一步进行了解释:无人车是软、硬件结合的产物。真正投入运营的车辆,无论是硬件设备还是软件系统,与实验室条件完全不同。
在实际测试,Apollo实车采用RTK GPS技术,该技术定位精度在厘米级别,远高于平常所用的GPS接收器的米级别精度。如果受到论文所假设的欺骗干扰,不能产生厘米级置信度的错误RTK。
如果试图欺骗GNSS接收机并产生错误的RTK结果,需要极高的硬件成本,对抗数十个卫星校验,以及车上双天线校验,理论上几乎不可能完成。最后,Apollo有多传感器融合和GPS伪造检测能力辅助识别欺骗。
另外,Apollo工程师指出,该项研究采用的Apollo MSF是2018版本,之所以能在仿真场景中攻击成功,是因为当时版本中的MSF并未实时将LiDAR等传感器数据与GNSS位置信息进行强校验。
而在最新的工程实践中,Apollo已经对此完成了优化。即使攻击者通过近距离长期尾随自动驾驶车辆,并持续发射GPS欺骗信 ,导致无人车车载高精度接收机的所有信道都被欺骗,最终位置输出偏差,MSF也可以通过新增的相对稳定、不受外界干扰的激光定位作为观测值强校验,进行规避。
Apollo方面还建议,类似的硬件安全研究,应该在真实环境中进行进一步测试,以便最终落地工业。为此,Apollo未来也计划与各个高校建立合作。
说到底,把自动驾驶车辆忽悠瘸,本就不是攻防研究的本质目的。
挖掘现有方法背后的安全问题,让自动驾驶系统更加安全,才是相关研究的意义所在。
相信开放的技术交流、合作,也会让我们离更加安全的自动驾驶更进一步。
你说呢p>
传送门:
项目链接:https://sites.google.com/view/cav-sec/fusionripper
— 完 —
量子位 QbitAI · 头条 签约
关注我们,第一时间获知前沿科技动态
文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34798 人正在系统学习中 相关资源:典型自动驾驶仿真软件介绍-iatf16949标准知识培训讲义-交通文档类…
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!