基于AR谱特征的声目标识别

关于AR谱

AR模型全称Auto-Regression Model,是通过参数计算信 功率谱的一种方法。在Matlab中计算AR谱很简单:假设有一个1024个点的车辆信 x,

其中u(n)是噪声输入,系数阶数就是上式中的p。牵扯到FFT,是因为功率谱的计算中可以使用FFT进行快速计算,因此就有离散FFT在单位圆上抽样点数的问题,功率谱的计算公式是:

其中N表示一帧的长度。短时平均能量可用于判断静音帧,静音帧的短时能量小,这比直接通x(n)的最高幅值进行判断稳定性要高。对于静音帧,应该在后续的处理之前去除。通常,语音比音乐含有更多的静音(人说话没有音乐那样着腔带调),因此,语音的平均能量的变化要比音乐中大很多。

2 短时过零率(Short Time Zero-Corssing Rate, ZCR)

短时过零率是在一个音频帧内,离散采样信 值由负到正或由正到负的变换次数。

不同音频信 的能量分布不同,通过子带能量能区分能量的主要分布频带。子带能量比是一个很好参数,用于识别频率能量分布不同的目标。当然类似的思想也可以用到FFT频谱图上。

4 谱频率重心(Spectrum Centroid, SC)

将AR谱的幅值看做权值w,则谱频率重心的计算是:

特征

使用LibSVM训练,核函数使用RBF,效果一般比其它的要好一些,这里大部分参数默认(主要有gamma和C参数)。要使用LibSVM获得好的效果,请参考我的另一篇博文“LibSVM笔记系列(2)——如何提升LibSVM分类效果”,主要是一些关于如何搜索获得最佳参数的方法。

实验总共数据1400组,卡车和飞机各选200组用于训练(代码为实际代码的一部分,由于其它原因,暂时无法公开代码),

其余的1000组用于测试,

最后的预测结果如下:

识别结果

识别结果

预测正确率达到86.50%,能使用到到实际当中。

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2014年10月5日
下一篇 2014年10月5日

相关推荐