金融博士书籍

A:数学分析 微分方程
微观金融学包括金融市场及金融机构研究、投资学金融工程学金融经济学、公司金融财务管理等方面,宏观金融学包括货币经济学货币银行学、国际金融学等方面,实证和数量方法包括数理金融学、金融计量经济学等方面,以下书目侧重数学基础、经济理论和数理金融学部分。
◎函数与分析
●集合论
☆Paul R. Halmos,Naive Set Theory 朴素集合论(美)哈莫斯(好书,深入浅出但过简洁)
集合论(英文版)Thomas Jech(有深度)
Moschovakis,Notes on Set Theory
集合论基础(英文版)——图灵原版数学·统计学系列(美)恩德滕
●数学分析
○微积分
☆Tom M. Apostol, Calculus vol Ⅰ&Ⅱ(数学家写的经典高等微积分教材/参考书,写法严谨,40年未再版,致力于更深刻的理解,去除微积分和数学分析间隔,衔接分析学、微分方程、线性代数、微分几何和概率论等的学习,学实分析的前奏,线性代数应用最好的多元微积分书,练习很棒,对初学者会难读难懂,但具有其他教材无法具备的优点。Stewart的书范围相同,也较简单。)
Carol and Robert Ash,The Calculus Tutoring Book(不错的微积分辅导教材)
★R. Courant, F. John, Introduction to Calculus and Analysis vol Ⅰ&Ⅱ(适合工科,物理和应用多)
Morris Kline,Calculus, an intuitive approach
Ron LarsonCalculus (With Analytic Geometry(微积分入门教材,难得的清晰简化,与Stewart同为流行教材)
《高等微积分》Lynn H.Loomis / Shlomo Stermberg
Morris Kline,Calculus: An Intuitive and Physical Approach(解释清晰的辅导教材)
Richard Silverman,Modern Calculus with Analytic Geometry
Michael,Spivak,Calculus(有趣味,适合数学系,读完它或者Stewart的就可以读Rudin的Principles of Mathematical Analysis或者Marsden的Elementary Classical Analysis,然后读Royden的Real Analysis学勒贝格积分和测度论或者Rudin的Functional Analysis学习巴拿赫和希尔伯特空间上的算子和谱理论)
James Stewart,Calculus(流行教材,适合理科及数学系,可以用Larson书补充,但解释比它略好,如果觉得难就用Larson的吧)
Earl W. Swokowski,Cengage Advantage Books: Calculus: The Classic Edition(适合工科)
Silvanus P. Thompson,Calculus Made Easy(适合微积分初学者,易读易懂)
○实分析(数学本科实变分析水平)(比较静态分析)
Understanding Analysis, Stephen Abbott,(实分析入门好书,虽然不面面俱到但清晰简明,Rudin, Bartle, Browder等人毕竟不擅于写入门书,多维讲得少)
★T. M. Apostol, Mathematical Analysis
Problems in Real Analysis 实分析习题集(美)阿里普兰斯,(美)伯金肖
☆《数学分析》方企勤,北大
胡适耕,实变函数
《分析学》Elliott H. Lieb / Michael Loss
★H. L. Royden, Real Analysis
W. Rudin, Principles of Mathematical Analysis
Elias M.Stein,Rami Shakarchi, Real Analysis:Measure Theory,Integration and Hilbert Spaces,实分析(英文版)
《数学分析八讲》辛钦
☆《数学分析新讲》张筑生,北大 周民强,实变函数论,北大
☆周民强《数学分析》上海科技
○测度论(与实变分析有重叠)
概率与测度论(英文版)(美)阿什(Ash.R.B.),(美)多朗-戴德(Doleans-Dade,C.A.)
☆Halmos,Measure Theory,测度论(英文版)(德)霍尔姆斯
○傅里叶分析(实变分析和小波分析各有一半)
小波分析导论(美)崔锦泰
H. Davis, Fourier Series and Orthogonal Functions
★Folland,Real Analysis:Modern Techniques and Their Applications
★Folland,Fourier Analysis and its Applications,数学物理方程:傅里叶分析及其应用(英文版)——时代教育.国外高校优秀教材精选 (美)傅兰德
傅里叶分析(英文版)——时代教育·国外高校优秀教材精选 (美)格拉法科斯
B. B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making
Katanelson,An Introduction to Harmonic Analysis
R. T. Seeley, An Introduction to Fourier Series and Integrals
★Stein,Shakarchi,Fourier Analysis:An Introduction
○复分析(数学本科复变函数水平)
L. V. Ahlfors, Complex Analysis ,复分析——华章数学译丛,(美)阿尔福斯(Ahlfors,L.V.)
★Brown,Churchill,Complex Variables and Applications Convey, Functions of One Complex Variable Ⅰ&Ⅱ
《简明复分析》龚升, 北大
Greene,Krantz,Function Theory of One Complex Variable
Marsden,Hoffman,Basic Complex Analysis
Palka,An Introduction to Complex Function Theory
★W. Rudin, Real and Complex Analysis 《实分析与复分析》鲁丁(公认标准教材,最好有测度论基础)
Siegels,Complex Variables
Stein,Shakarchi,Complex Analysis 《复变函数》庄坼泰
●泛函分析(资产组合的价值)
○基础泛函分析(实变函数、算子理论和小波分析)
实变函数与泛函分析基础,程其衰,高教
★Friedman,Foundations of Modern Analysis
《实变与泛函》胡适耕
《泛函分析引论及其应用》克里兹格 泛函分析习题集(印)克里希南
Problems and methods in analysis,Krysicki
夏道行,泛函分析第二教程,高教
★夏道行,实变函数与泛函分析
《数学分析习题集》谢惠民,高教
泛函分析·第6版(英文版) K.Yosida
《泛函分析讲义》张恭庆,北大
○高级泛函分析(算子理论)
J.B.Conway, A Course in Functional Analysis,泛函分析教程(英文版)
★Lax,Functional Analysis
★Rudin,Functional Analysis,泛函分析(英文版)[美]鲁丁 (分布和傅立叶变换经典,要有拓扑基础)
Zimmer,Essential Results of Functional Analysis
○小波分析
Daubeches,Ten Lectures on Wavelets
★Frazier,An Introduction to Wavelets Throughout Linear Algebra Hernandez,
《时间序列的小波方法》Percival
★Pinsky,Introduction to Fourier Analysis and Wavelets
Weiss,A First Course on Wavelets
Wojtaszczyk,An Mathematical Introduction to Wavelets Analysis
●微分方程(期权定价、动态分析)
○常微分方程和偏微分方程(微分方程稳定性,最优消费组合)
V. I. Arnold, Ordinary Differential Equations,常微分方程(英文版)(现代化,较难)
★W. F. Boyce, R. C. Diprima, Elementary Differential Equations and Boundary Value Problems
《数学物理方程》陈恕行,复旦
E. A. Coddington, Theory of ordinary differential equations
A. A. Dezin, Partial differential equations
L. C. Evans, Partial Differential Equations
丁同仁《常微分方程教程》高教
《常微分方程习题集》菲利波夫,上海科技
★G. B. Folland, Introduction to Partial Differential Equations
Fritz John, Partial Differential Equations
《常微分方程》李勇
☆The Laplace Transform: Theory and Applications,Joel L. Schiff(适合自学)
G. Simmons, Differntial Equations With Applications and Historecal Notes
索托梅约尔《微分方程定义的曲线》
《常微分方程》王高雄,中山大学
《微分方程与边界值问题》Zill
○偏微分方程的有限差分方法(期权定价)
福西斯,偏微分方程的有限差分方法
★Kwok,Mathematical Models of Financial Derivatives(有限差分方法美式期权定价)
★Wilmott,Dewynne,Howison,The Mathematics of Financial Derivatives (有限差分方法美式期权定价)
○统计模拟方法、蒙特卡洛方法Monte Carlo method in finance(美式期权定价)
★D. Dacunha-Castelle, M. Duflo, Probabilités et Statistiques II
☆Fisherman,Monte Carlo Glasserman,Monte Carlo Mathods in Financial Engineering(金融蒙特卡洛方法的经典书,汇集了各类金融产品)
☆Peter Jaeckel,Monte Carlo Methods in Finance(金融数学好,没Glasserman的好)
★D. P. Heyman and M. J. Sobel, editors,Stochastic Models, volume 2 of Handbooks in O. R. and M. S., pages 331-434. Elsevier Science Publishers B.V. (North Holland)
Jouini,Option Pricing,Interest Rates and Risk Management
★D. Lamberton, B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance(连续时间)
★N. Newton,Variance reduction methods for diffusion process :
★H. Niederreiter,Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Appl. Math. SIAM
★W.H. Press and al.,Numerical recepies.
★B.D. Ripley. Stochastic Simulation
★L.C.G. Rogers et D. Talay, editors, Numerical Methods in Finance. Publications of the Newton Institute.
★D.V. Stroock, S.R.S. Varadhan, Multidimensional diffusion processes
★D. Talay,Simulation and numerical analysis of stochastic differential systems, a review. In P. Krée and W. Wedig, editors, Probabilistic Methods in Applied Physics, volume 451 of Lecture Notes in Physics, chapter 3, pages 54-96.
★P.Wilmott and al.,Option Pricing (Mathematical models and computation).
Benninga,Czaczkes,Financial Modeling
○数值方法 、数值实现方法
Numerical Linear Algebra and Its Applications,科学
K. E. Atkinson, An Introduction to Numerical Analysis
R. Burden, J. Faires, Numerical Methods
《逼近论教程》Cheney
P. Ciarlet, Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied Mathematics
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics
《数值逼近》蒋尔雄
《数值分析》李庆杨,清华
《数值计算方法》林成森
J. Stoer, R. Bulirsch, An Introduction to Numerical Analysis
J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations
L. Trefethen, D. Bau, Numerical Linear Algebra
《数值线性代数》徐树芳,北大
其他(不必)
《数学建模》Giordano
《离散数学及其应用》Rosen
《组合数学教程》Van Lint
◎几何学和拓扑学 (凸集、凹集)
●拓扑学
○点集拓扑学
★Munkres,Topology:A First Course《拓扑学》James R.Munkres
Spivak,Calculus on Manifolds
◎代数学(深于数学系高等代数)(静态均衡分析)
○线性代数、矩阵论(资产组合的价值)
M. Artin,Algebra
Axler, Linear Algebra Done Right
★Curtis,Linear Algeria:An Introductory Approach
W. Fleming, Functions of Several Variables
Friedberg, Linear Algebra Hoffman & Kunz, Linear Algebra
P.R. Halmos,Finite-Dimensional Vector Spaces(经典教材,数学专业的线性代数,注意它讲抽象代数结构而不是矩阵计算,难读)
J. Hubbard, B. Hubbard, Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach
N. Jacobson,Basic Algebra Ⅰ&Ⅱ
☆Jain《线性代数》
Lang,Undergraduate Algeria
Peter D. Lax,Linear Algebra and Its Applications(适合数学系)
G. Strang, Linear Algebra and its Applications(适合理工科,线性代数最清晰教材,应用讲得很多,他的 上讲座很重要)
●经济最优化
Dixit,Optimization in Economic Theory
●一般均衡
Debreu,Theory of Value
●分离定理
★Hildenbrand,Kirman,Equilibrium Analysis(均衡问题一般处理)
★Magill,Quinzii,Theory of Incomplete Markets(非完备市场的均衡)
★Mas-Dollel,Whinston,Microeconomic Theory(均衡问题一般处理)
★Stokey,Lucas,Recursive Methods in Economic Dynamics(一般宏观均衡)
B:概率论、数理统计、随机
◎概率统计
●概率论(金融产品收益估计、不确定条件下的决策、期权定价)
○基础概率理论(数学系概率论水平)
★《概率论》(三册)复旦
Davidson,Stochastic Limit Theory
Durrett,The Essential of Probability,概率论第3版(英文版)
★W. Feller,An Introduction to Probability Theory and its Applications概率论及其应用(第3版)——图灵数学·统计学丛书
《概率论基础》李贤平,高教
G. R. Grimmett, D. R. Stirzaker, Probability and Random Processes
☆Ross,S. A first couse in probability,中国统计影印版;概率论基础教程(第7版)——图灵数学·统计学丛书(例子多)
☆《概率论》汪仁官,北大
王寿仁,概率论基础和随机过程,科学
☆《概率论》杨振明,南开,科学
○基于测度论的概率论
测度论与概率论基础,程式宏,北大
★D. L. Cohn, Measure Theory
Dudley,Real Analysis and Probability
★Durrett,Probability:Theory and Examples
Jacod,Protter,Probability Essentials Resnick,A Probability Path
★Shirayev,Probability
严加安,测度论讲义,科学
★钟开莱,A Course in Probability Theory
○随机过程微积分Introduction of diffusion processes (期权定价)
K. L. Chung, Elementary Probability Theory with Stochastic Processes
Cox,Miller,The Theory of Stochastic
★R. Durrett, Stochastic calculus
★黄志远,随机分析入门
黄志远 《随机分析学基础》科学
姜礼尚,期权定价的数学模型和方法,高教
《随机过程导论》Kao
Karlin,Taylor,A First Course in Stochastic Prosses(适合硕士生)
Karlin,Taylor,A Second Course in Stochastic Prosses(适合硕士生)
随机过程,劳斯,中国统计
☆J. R. Norris,Markov Chains(需要一定基础)
★Bernt Oksendal, Stochastic differential equations(绝佳随机微分方程入门书,专注于布朗运动,比Karatsas和Shreve的书简短好读,最好有概率论基础,看完该书能看懂金融学术文献,金融部分没有Shreve的好)
★Protter,Stochastic Integration and Differential Equations(文笔优美)
★D. Revuz, M. Yor, Continuous martingales and Brownian motion(连续鞅)
Ross,Introduction to probability model(适合入门)
★Steel,Stochastic Calculus and Financial Application(与Oksendal的水平相当,侧重金融,叙述有趣味而削弱了学术性,随机微分、鞅)
☆《随机过程通论》王梓坤,北师大
○概率论、随机微积分应用(连续时间金融)
Arnold,Stochastic Differential Equations
☆《概率论及其在投资、保险、工程中的应用》Bean
Damien Lamberton,Bernard Lapeyre. Introduction to stochastic calculus applied to finance.
David Freedman.Browian motion and diffusion.
Dykin E. B. Markov Processes.
Gihman I.I., Skorohod A. V.The theory of Stochastic processes基赫曼,随机过程论,科学
Lipster R. ,Shiryaev A.N. Statistics of random processes.
★Malliaris,Brock,Stochastic Methods in Economics and Finance
★Merton,Continuous-time Finance
Salih N. Neftci,Introduction to the Mathematics of Financial Derivatives
☆Steven E. Shreve ,Stochastic Calculus for Finance I: The Binomial Asset Pricing Model;II: Continuous-Time Models(最佳的随机微积分金融(定价理论)入门书,易读的金融工程书,没有测度论基础最初几章会难些,离散时间模型,比Naftci的清晰,Shreve的 上教程也很优秀)
Sheryayev A. N. Ottimal stopping rules.
Wilmott p., J.Dewynne,S. Howison. Option Pricing: Mathematical Models and Computations.
Stokey,Lucas,Recursive Methods in Economic Dynamics
Wentzell A. D. A Course in the Theory of Stochastic Processes.
Ziemba,Vickson,Stochastic Optimization Models in Finance
○概率论、随机微积分应用(高级)
Nielsen,Pricing and Hedging of Derivative Securities
Ross,《数理金融初步》An Introduction to Mathematical Finance:Options and other Topics
Shimko,Finance in Continuous Time:A Primer
○概率论、鞅论
★P. Billingsley,Probability and Measure
K. L. Chung & R. J. Williams,Introduction to Stochastic Integration
Doob,Stochastic Processes
严加安,随机分析选讲,科学
○概率论、鞅论Stochastic processes and derivative products(高级)
★J. Cox et M. Rubinstein : Options Market
★Ioannis Karatzas and Steven E. Shreve,Brownian Motion and Stochastic Calculus(难读的重要的高级随机过程教材,若没有相当数学功底,还是先读Oksendal的吧,结合Rogers & Williams的书读会好些,期权定价,鞅)
★M. Musiela – M. Rutkowski : (1998) Martingales Methods in Financial Modelling
★Rogers & Williams,Diffusions, Markov Processes, and Martingales: Volume 1, Foundations;Volume 2, Ito Calculus (深入浅出,要会实复分析、马尔可夫链、拉普拉斯转换,特别要读第1卷)
★David Williams,Probability with Martingales(易读,测度论的鞅论方法入门书,概率论高级教材)
○鞅论、随机过程应用
Duffie,Rahi,Financial Market Innovation and Security Design:An Introduction,Journal of Economic Theory
Kallianpur,Karandikar,Introduction to Option Pricing Theory
★Dothan,Prices in Financial Markets (离散时间模型)
Hunt,Kennedy,Financial Derivatives in Theory and Practice
何声武,汪家冈,严加安,半鞅与随机分析,科学
★Ingersoll,Theory of Financial Decision Making
★Elliott Kopp,Mathematics of Financial Markets(连续时间)
☆Marek Musiela,Rutkowski,Martingale Methods in Financial Modeling(资产定价的鞅论方法最佳入门书,读完Hull书后的首选,先读Rogers & Williams、Karatzas and Shreve以及Bjork打好基础)
○弱收敛与随机过程收敛
★Billingsley,Convergence of Probability Measure
Davidson,Stochastic Limit Theorem
★Ethier,Kurtz,Markov Process:Characterization and Convergence Hall,Martingale Limit Theorems
★Jocod,Shereve,Limited Theorems for Stochastic Process
Van der Vart,Weller,Weak Convergence and Empirical Process
◎运筹学
●最优化、博弈论、数学规划
○随机控制、最优控制(资产组合构建)
Borkar,Optimal control of diffusion processes
Bensoussan,Lions,Controle Impulsionnel et Inequations Variationnelles
Chiang,Elements of Dynamic Optimization
Dixit,Pindyck,Investment under Uncertainty
Fleming,Rishel,Deterministic and Stochastic Optimal Control
Harrison,Brownian Motion and Stochastic Flow Systems
Kamien,Schwartz,Dynamic Optimization
Krylov,Controlled diffusion processes
○控制论(最优化问题)
●数理统计(资产组合决策、风险管理)
○基础数理统计(非基于测度论)
★R. L. Berger, Cassell, Statistical Inference
Bickel,Dokosum,Mathematical Stasistics:Basic Ideas and Selected Topics
★Birrens,Introdution to the Mathematical and Statistical Foundation of Econometrics
数理统计学讲义,陈家鼎,高教
★Gallant,An Introduction to Econometric Theory
R. Larsen, M. Mars, An Introduction to Mathematical Statistics
☆《概率论及数理统计》李贤平,复旦
☆Papoulis,Probability,random vaiables,and stochastic process
☆Stone,《概率统计》
★《概率论及数理统计》中山大学统计系,高教
○基于测度论的数理统计(计量理论研究)
Berger,Statistical Decision Theory and Bayesian Analysis
陈希儒,高等数理统计
★Shao Jun,Mathematical Statistics
★Lehmann,Casella,Theory of Piont Estimation
★Lehmann,Romano,Testing Statistical Hypotheses
《数理统计与数据分析》Rice
○渐近统计
★Van der Vart,Asymptotic Statistics
○现代统计理论、参数估计方法、非参数统计方法
参数计量经济学、半参数计量经济学、自助法计量经济学、经验似然
文章知识点与官方知识档案匹配,可进一步学习相关知识OpenCV技能树首页概览11547 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!