写在前面
Doublets:一个液滴或一个微孔中包含了2个或多个细胞 。
对于高通量方法,在细胞捕获效率和doublets比例之间存在折中,通常的做法是以1-5%的doublets为目标(Ziegenhain et al., 2017)(
http://refhub.elsevier.com/S0098-2997(17)30049-3/sref115) 。
以前在分析单细胞数据的时候,我其实从来没有注意过这样一个问题,即使知道可能会出现doublet,还是会天真地认为自己的专业知识是可以把这一部分避免掉,比如当同时在一类细胞中发现两种不同的细胞Marker(他们之间不可以相互转化),我一般会果断的定义为污染。可是随着看的文献越来越多,发现细胞之间的特异性marker越来越模糊,一些不能进行相互转化的细胞marker可能存在于某一小类细胞中。
当然,这些R包并不一定能够解决这些问题,多数的Doublet软件对异质性较高的细胞之间的预测较好,但希望通过总结这类软件,提醒大家在定义过渡态细胞时一定要反复去验证,保证数据的真实性。
Doublet软件包汇总
1.DoubletFinder
DoubletFinder是一种R包,可预测单细胞RNA测序数据中的doublet。
实现DoubletFinder:Seurat> = 2.0(
https://satijalab.org/seurat/)
DoubletFinder由Cell Systems于2019年4月出版:https:
//www.cell.com/cell-systems/fulltext/S2405-4712(19)30073-0
安装(在R/RStudio中)
devtools::install_github('chris-mcginnis-ucsf/DoubletFinder')
依赖包
DoubletFinder概述
DoubletFinder可以分为4个步骤:
(1)从现有的scRNA-seq数据中生成artificial doublets;
(2)预处理合并的real-artifical data;
(3)执行PCA并使用PC距离矩阵查找每个单元的artificial k
最近邻居(pANN)的比例;
(4)根据预期的doublets数量排序和计算阈值pANN值;
缺点:DoubletFinder对同种类型细胞间的doublets不敏感 – 即从转录相似的细胞状态衍生的doublets。
Example
## Pre-process Seurat object -------------------------------------------------------------------------------------------------seu_kidney <- CreateSeuratObject(kidney.data)seu_kidney <- NormalizeData(seu_kidney)seu_kidney <- ScaleData(seu_kidney, vars.to.regress = "nUMI")seu_kidney <- FindVariableGenes(seu_kidney, x.low.cutoff = 0.0125, y.cutoff = 0.25, do.plot=FALSE)seu_kidney <- RunPCA(seu_kidney, pc.genes = seu_kidney@var.genes, pcs.print = 0)seu_kidney <- RunTSNE(seu_kidney, dims.use = 1:10, verbose=TRUE)## pK Identification ---------------------------------------------------------------------------------------------------------sweep.res.list_kidney <- paramSweep(seu_kidney, PCs = 1:10)sweep.stats_kidney <- summarizeSweep(sweep.res.list_kidney, GT = FALSE)bcmvn_kidney <- find.pK(sweep.stats_kidney)## Homotypic Doublet Proportion Estimate -------------------------------------------------------------------------------------homotypic.prop <- modelHomotypic(annotations) ## ex: annotations <- seu_kidney@meta.data$ClusteringResultsnExp_poi <- round(0.075*length(seu_kidney@cell.names)) ## Assuming 7.5% doublet formation rate - tailor for your datasetnExp_poi.adj <- round(nExp_poi*(1-homotypic.prop))## Run DoubletFinder with varying classification stringencies ----------------------------------------------------------------seu_kidney <- doubletFinder(seu_kidney, PCs = 1:10, pN = 0.25, pK = 0.09, nExp = nExp_poi, reuse.pANN = FALSE)seu_kidney <- doubletFinder(seu_kidney, PCs = 1:10, pN = 0.25, pK = 0.09, nExp = nExp_poi.adj, reuse.pANN = "pANN_0.25_0.09_913")## Plot results --------------------------------------------------------------------------------------------------------------seu_kidney@meta.data[,"DF_hi.lo"] <- seu_kidney@meta.data$DF.classifications_0.25_0.09_913seu_kidney@meta.data$DF_hi.lo[which(seu_kidney@meta.data$DF_hi.lo == "Doublet" & seu_kidney@meta.data$DF.classifications_0.25_0.09_473 == "Singlet")] <- "Doublet_lo"seu_kidney@meta.data$DF_hi.lo[which(seu_kidney@meta.data$DF_hi.lo == "Doublet")] <- "Doublet_hi"TSNEPlot(seu_kidney, group.by="DF_hi.lo", plot.order=c("Doublet_hi","Doublet_lo","Singlet"), colors.use=c("black","gold","red"))
详情可以点击DoubletFinder(
https://github.com/ddiez/DoubletFinder)对自己的数据进行一下预测哦!
2.scrublet
Single-Cell Remover of Doublets
用于识别单细胞RNA-seq数据中doublets的Python代码。可以参考 Cell Systems(
https://www.sciencedirect.com/science/article/pii/S2405471218304745) 上的文章或者 bioRxiv(
https://www.biorxiv.org/content/early/2018/07/09/357368).
Quick start:
给定原始(非标准化)UMI计算矩阵counts_matrix,其中细胞为行,基因为列,计算每个cell的doublet分数:
import scrublet as scrscrub = scr.Scrublet(counts_matrix)doublet_scores, predicted_doublets = scrub.scrub_doublets()
scr.scrub_doublets()模拟数据的doublets,并使用k-最近邻分类器是每个转录组计算连续的doublet_score(在0和1之间)。分数是由自动设定的阈值生成
predict_doublets,一个布尔数组,预测是doublets时为True,否则为False。
Best practices:
1.处理来自多个样品的数据时,分别对每个样品运行Scrublet。Scrublet用于检测由两个细胞的随机共包封形成的doublets,所以它可能在合并数据集上表现不佳;
2.在2-D嵌入(例如,UMAP或t-SNE)中可视化doublets预测;
Installation:
To install with PyPI:
pip install scrublet
To install from source:
git clone https://github.com/AllonKleinLab/scrublet.gitcd scrubletpip install -r requirements.txtpip install --upgrade .
详情可以点击scrublet(
https://github.com/AllonKleinLab/scrublet)对自己的数据进行一下预测哦!
3.DoubletDecon
一种细胞状态识别工具,用于从单细胞RNA-seq数据中去除doublets.
具体步骤可以参见文章:
bioRxiv(https://www.biorxiv.org/content/early/2018/07/08/364810)
安装
if(!require(devtools)){ install.packages("devtools") # If not already installed}devtools::install_github('EDePasquale/DoubletDecon')
依赖包
source("https://bioconductor.org/biocLite.R")biocLite(c("DeconRNASeq", "clusterProfiler", "hopach", "mygene", "tidyr", "R.utils", "foreach", "doParallel", "stringr"))install.packages("MCL")#进行安装依赖包
Example
以下数据的应用均来自于:
bioRxiv(https://www.biorxiv.org/content/early/2018/07/08/364810)
location="/Users/xxx/xxx/" #Update as neededexpressionFile=paste0(location, "counts.txt")genesFile=paste0(location, "Top50Genes.txt")clustersFile=paste0(location, "Cluster.txt")newFiles=Seurat_Pre_Process(expressionFile, genesFile, clustersFile)filename="PBMC_example"write.table(newFiles$newExpressionFile, paste0(location, filename, "_expression"), sep="t")write.table(newFiles$newFullExpressionFile, paste0(location, filename, "_fullExpression"), sep="t")write.table(newFiles$newGroupsFile, paste0(location, filename , "_groups"), sep="t", col.names = F)results=Main_Doublet_Decon(rawDataFile=newFiles$newExpressionFile, groupsFile=newFiles$newGroupsFile, filename=filename, location=location, fullDataFile=NULL, removeCC=FALSE, species="hsa", rhop=1.1, write=TRUE, PMF=TRUE, useFull=FALSE, heatmap=FALSE, centroids=TRUE, num_doubs=100, only50=FALSE, min_uniq=4)
详情可以点击:
DoubletDecon(
https://github.com/EDePasquale/DoubletDecon)对自己的数据进行一下去除doublets哦!
4.DoubletDetection
DoubletDetection是一个Python3包,用于检测单细胞RNA-seq计数矩阵中的doublets(技术错误)。
安装
git clone https://github.com/JonathanShor/DoubletDetection.gitcd DoubletDetectionpip3 install .
运行基本doublet分类:
import doubletdetectionclf = doubletdetection.BoostClassifier()# raw_counts is a cells by genes count matrixlabels = clf.fit(raw_counts).predict()
raw_counts是scRNA-seq计数矩阵(基因细胞),并且是阵列式的
labels是一维numpy ndarray,值1表示检测到的doublet,0表示单细胞,np.nan表示模糊的细胞。
分类器在以下情况运行最适合
参见jupyter notebook ,链接为:
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb,可以看到举个栗子!
详情可以点击:
DoubletDetection(
https://github.com/JonathanShor/DoubletDetection)对自己的数据进行一下预测吧!
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!