这究竟是怎样的一项技术,让全世界为之兴奋?它已经、或将会给我们带来什么?
要回答这个问题,先让我们重新认识一下基因。
生命的本质是一种特殊语言
人体细胞里收录着一套详细的“身体组装说明书”,指导着受精卵一步步长成“有头有脸”的人物,甚至生老病死也受其左右。这本天书的“文本”就是DNA(脱氧核糖核酸)。DNA分子由4种碱基(分别用A、T、C、G表示)串联而成。别看只有4种,它们的排列组合无穷无尽,编码出所有生命运作的细节。
生物体DNA里完整的一套遗传信息称为一个“基因组”,它存在于每一个细胞核里。而基因就相当于这本书中的某个章节,一般负责同一个主题(对应特定的功能)。粗略估计,人类基因组中约有2万~3万个基因,能编码出不同功能的蛋白质。我们生存的每一刻,都是它们聚沙成塔,互相协作的结果。
从前,为了得到更香甜的水果或肉质更鲜美的家畜,人们要耗费很多年去筛选、培育优点突出的品种。后来研究发现,水果的糖分或家畜的肌肉之所以到一定程度就不会继续增加,是因为有抑制糖分、抑制肌肉生长的“刹车”基因在起作用。通过修改、减弱这些基因的作用,就能更快、更经济地获得含糖量高、肉质更好的品种。
细菌:“基因魔剪?又是我玩剩下的”
和众多生物学的伟大发现一样,这把被认为将对人类未来产生巨大影响的“基因魔剪“,又是来自不遭人待见的细菌。
我们知道,包括人类在内的脊椎动物,都有一套“记性极佳”的免疫系统。当被一些病毒 (如水痘)感染后,就不会再次感染,或症状变得很轻。而研发疫苗也是出于类似目的:对一些不好对付的病毒(比如新冠病毒),疫苗能让免疫系统提前熟悉它们的特征、未雨绸缪。
那相对低级的生物怎么保护自己呢?
1987年,日本微生物学家石野良纯在大肠杆菌的DNA中发现了一些奇妙的片段:它们呈正反读起来内容相同的“回文”结构(就像 “花莲喷水池水喷莲花 ”),而且在同一区域里,相同内容的片段间隔、重复地成簇出现,而间隔它们的序列却各不相同。
起初人们百思不解这种夹花式的组合有什么意义,姑且称之为:“规律成簇的间隔短回文重复序列”,英文首字母缩写就是CRISPR。随着测序技术的发展,各种生物的DNA序列不断被获取,彼此间也有了比较。2000年前后,人们发现大肠杆菌CRISPR里的那些间隔片段,与病毒DNA有高度同源性,尤其是一种专门攻击细菌的病毒——噬菌体。
噬菌体的结构比细菌还要很简陋:一个蛋白质外壳,包裹着里面的DNA。一穷二白的它无法进行自我复制繁衍,只能靠打家劫舍——入侵其他细胞,将DNA植入对方体内,利用别人的原料、“工厂”复制出大量的自己,然后浩浩荡荡离去,留下被严重消耗、千疮百孔的细胞。
为了不坐以待毙,漫长岁月中,那些幸存下来的细菌进化出了一套独特的免疫功能。它们收集病毒的DNA片段,嵌入自己基因组的CRISPR区域。就像相册一样,用重复片段把”敌人的局部特写“条理分明地隔开。这本相册,会随着细菌代代相传。
用相册记住敌人只是第一步,重头戏是阻断病毒企图。
细菌会编码一种和CRISPR配套使用的蛋白(CRISPR Associated protein),称为Cas。Cas蛋白随身夹带一张来自CRISPR相册的病毒“照片”(为单链状态的CRSIPR RNA,简称crRNA),用以辨认敌人特征。如果入侵的病毒DNA片段正好与这张照片匹配,图穷匕见,Cas就立刻将匹配上的病毒DNA分子“咔嚓”剪断。如果遇到新片段,Cas则会把它收集起来,为CRISPR相册增加新的一页。
细菌的这套机制,和人体免疫系统产生抗体的原理非常接近,实现了“被攻击-记忆-识别-主动攻击”的系列动作。而CRISPR-Cas系统最精彩之处在于它能精确识别病毒DNA片段,原处剪断。于是,科学家们设想:
如果能保留Cas的剪切功能,把“照片”换成我们指定的片段,那岂不是就“指哪儿打哪儿”了吗?
2012年美国加利福尼亚大学伯克利分校的 Jennifer Doudna教授和瑞典于默奥大学的 Emmanuelle Charpentier教授以化脓性链球菌为基础,对这一系统进行了改良。她们发现了剪切效率更高的Cas9蛋白,并把系统进一步简化:将目标片段crRNA和一些辅助元件作为一个整体人工合成,待使用时与Cas9组合成一把完整的CRISPR-Cas9剪刀。
不过,让世人正式看到了这项技术巨大潜力的,是2013年美国博德研究所(Broad Institute)的华人科学家张锋在《科学》杂志发表的成果。他率先证明CRISPR-Cas9系统能用于真核生物(包括动物、植物、真菌等),并且新方案也是“傻瓜式”操作:只要将CRISPR-Cas9溶液撒到细胞上,置于37℃环境一段时间,目标基因就能被切断。即使初级的科研人员,也能顺利操作。
这意味着,与基因修改相关的所有操作(包括敲除、替换、插入等)都将变得十分便捷。巨大的商业应用前景(2020年市场估值170亿美元)让加利福尼亚大学伯克利分校和博德研究所,为了CRISPR的首个专利在法庭上打了好几个回合。尽管根据最新裁定(2010年9月10日),以“杜德纳和加州大学伯克利分校覆盖关于CRISPR的所有专利,而张锋和博德研究所拥有其中的一项关键专利(将CRISPR用于真核生物)”而暂时告一段落,但这场旷日之战恐怕很难就此罢休。
CRISPR-Cas技术的高效易用,让各个领域的科研人员跃跃欲试。门槛的降低也让风险加速而来。首当其冲的就是伦理隐患。2018年11月,一对婴儿的诞生直接将难题推到了众人眼前。
多年来,艾滋病疫苗的研发始终未能成功。而研究表明,艾滋病毒感染人体细胞,需要从细胞表面的受体蛋白(相当于门户)进入。一种名为CCR5的蛋白恰好就是这种门户。理论上只要用CRISPR-Cas9切断编码CCR5蛋白的基因,阻止蛋白生成,就能防止艾滋病毒进入人体细胞。贺建奎团队正是对人类胚胎进行了这种操作,称两个婴儿对艾滋病有天然抵抗能力。
听起来很厉害,但为什么却遭到了一致批评呢?
因为从技术上讲,该研究毫无创新之处,稍有条件的实验室都能做得到。但出于对副作用和伦理的担忧,对于人的非治疗目的基因干预(尤其对胚胎/生殖细胞)是各国科学家达成共识的、现阶段不可触碰的底线。
综合考虑有以下几点:
其次,一个基因未必只对应一个功能。除了编码艾滋病门户蛋白,CRR5基因自身是否有其他功能,与其他基因是否还有协作关系?现阶段我们对人类基因组的认识还十分浅薄,这些都尚不明确。贸然修改并不完全了解的基因,可能引发意想不到的后果。
更进一步,即便技术完美,人人都能自由修改后代的基因,囿于时代的审美,大家都得到了“完美”孩子,这种多样性缺失的人类基因库,能否保障人类族群度过未知的外界危机呢?比如,令人美丽强壮的基因,恰好对某种未知病毒易感?
带着脚链跳舞——技术与知识的边界
归根结底,恐惧和盲目都源于未知。
通过修改动植物基因的不同位置,观察对应的功能变化,或者切断不同基因,看整个生物体的变化,都有助于梳理出基因间的关联,摸清生命的运作 络。这种基因的“开关游戏”,不仅能帮我们找到调控动植物性状的基因、对其进行改良,也能帮助我们理解、甚至预测癌症等人类疑难重症的发生。
2013年,冷泉港实验室的研究人员就用CRISPR-Cas9系统切断对应基因,筛出了急性髓系白血病中癌变细胞生长必须的两个酶(LKB1和盐诱导激酶),令以往劳师动众的基因筛选工作效率骤升。
归根结底,我们生活在一个充满奇迹,千变万化的时代,能见证新技术诞生是件很幸运的事情。客观评估技术的能力和局限、认清我们知识的边界,怀着敬畏审慎之心去使用技术,才能让技术造福于人,避免出现我们尚无力承担的后果。(徐斯佳 日本京都大学医学院“十点科学”(ID:Science_10))
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!