2011年麦肯锡全球研究院大数据 告表明,2009年美国以装备制造为代表的离散工业领域拥有的数据规模为各领域之首,比美国政府拥有的数据还要多。近年来,随着德国工业4.0和美国工业互联 为代表的新工业革命深入发展,以及“中国制造2025”、“互联 +”行动计划与“促进大数据发展行动纲要”的颁布实施,工业大数据得到了越来越多的关注。这里分享一下我们的思考与实践。

2011年麦肯锡全球研究院大数据 告表明,2009年美国以装备制造为代表的离散工业领域拥有的数据规模为各领域之首,比美国政府拥有的数据还要多。近年来,随着德国工业4.0和美国工业互联 为代表的新工业革命深入发展,以及“中国制造2025”、“互联 +”行动计划与“促进大数据发展行动纲要”的颁布实施,工业大数据得到了越来越多的关注。这里分享一下我们的思考与实践。



  • 企业信息系统存储了高价值密度的核心业务数据。上世纪60年代以来信息技术加速应用于工业领域,形成了产品生命周期管理(PLM)、企业资源规划(ERP)、供应链管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、物流供应数据以及客户服务数据,存在于企业或产业链内部,是工业领域传统数据资产。

工业大数据实施的关键问题


数据质量、多源关联和系统集成是工业大数据实施的关键问题:

拥有大数据不是目的,发掘其价值才是关键。由企业信息化数据、装备物联 数据和外部互联 数据汇聚而成的工业大数据,蕴藏着巨大价值。例如,通过分析用户使用数据改进产品,通过分析现场测量数据提高工件加工水平,通过工况数据进行产品健康管理等。

实施工业大数据项目需要关注以下3个关键问题:

  • 数据质量控制问题

原始数据(生数据)质量决定分析结果的质量。企业信息系统数据质量仍然存在问题,例如2014年某大型机车企业ERP系统中近20%物料存在“一物多码”问题。装备物联 数据质量堪忧,某大型制造企业1个月的状态工况数据中,无效工况(如盾构机传回了工程车工况)、重名工况(同一状态工况使用不同名字)、时标混乱(当前时间错误或时标对不齐)等数据质量问题约30%。

  • 多源数据关联问题
  • 大数据系统集成问题


工业大数据分析方案即将精益生产理论体系进行了完美的融合和应用,并对大数据总体架构进行了更细致明确的解读,提供自主研发的大数据平台,实现ETL、数据管理及存储、数据建模。如下图所示:

立即申请大数据demo


关于大数据分析平台

大数据分析平台「GetInsight升级发布,将基于企业管理驾驶舱产品质量分析及预测设备分析及预测等大数据模型的构建,助力企业由传统运营模式向数字化、智能化的新模式转型升级,抓住数据经济的发展势头,提供管理效能,精准布局未来。了解更多,请联系在线客服。

大数据专业团队为企业提供商业智能大数据平台搭建,免费业务咨询,定制开发等完整服务,快速、轻松、低成本将任何Hadoop集群从试用阶段转移到生产阶段。

欢迎拨打热线或咨询在线客服,我们有专业的大数据团队,为您提供免费大数据相关业务咨询!

标签:

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2020年8月26日
下一篇 2020年8月27日

相关推荐

发表回复

登录后才能评论