关注泰科科技 做模拟不迷路

包装覆盖产品,在存储、运输、分发和使用过程中保护产品。除了作为抵御冲击、温度变化和压力变化的物理外壳,它还可以作为抵御氧化剂的屏障。最后,它是一种信息和营销工具。

Packaging Development and
New Trends
开发新包装的主要步骤包括:
I研究:选择材料(通常是聚合物薄膜)并进行设计;
II开发:在实验室(试点)规模上对材料的物理和化学性质、对环境的潜在影响、安全和监管问题进行表征和评估;
III制造:在质量控制指导下大规模生产。选择包装材料是一个漫长的过程。常用的材料有纸和纸板、塑料、金属和玻璃。
2019年,塑料占全球包装需求的近一半,约为44%1。如今塑料的产量已经超过了世界所能处理的总量,其中很大一部分是一次性使用的,在使用后的几分钟内就被处理到环境中,但在自然中保存了数百年。因此,随着这些材料的变化,可持续发展的理念应运而生,迫切需要创新的、可回收的、可再生的和可降解的组件。
考虑到新的消费者的需求,供应链的波动,以及将不可降解的塑料排放到环境中对生物的后果,必须尽快解决这一挑战。因此,模拟和建模似乎是迅速解决这一问题的有力工具,其好处包括加强新物质的发现,不仅减少实验室使用的资源,而且减少用于大量必要物理测试的时间。

BIOVIA as a Laboratory and
Industry Solution Tool
BIOVIA Materials Studio (MS)是一款来自达索Systèmes的建模和仿真工具,它提供了一系列不同的模块来建模不同的材料,研究它们的特性,并分析它们的行为。模拟尺度通常从原子尺度到中尺度。原子模型提供了更详细的见解,因此它是研究分子结构、内能、化学键和角度等的一个很好的选择。而对于较大的系统则采用了细观结构(图1)。
MS Mesocite可以对细观结构进行建模和模拟,使研究具有多个组分的复杂构型成为可能。这种模型在时间和系统长度的原子尺度上具有挑战性。在原子尺度上,有必要考虑系统中所有原子之间的每一次相互作用;然而,在中尺度上(即粗粒度模型4),原子被分组在一起,这降低了自由度,系统只考虑组之间的相互作用,这大大降低了计算成本。
1 b,这种简化使大规模系统的模拟成为可能,如膜、软物质和生物聚合物。

Figure 1: (a) Molecular

Figure 1 (b)Coarse-Grained Representation of Dilinoleoylphosphatidylcholine (DLPC)
为了将真实的分子带到虚拟的环境中,我们实现了原子间势,通常称为力场,这是决定珠子如何相互作用的参数的组合。这些参数包括键项(分子内相互作用)和非键项(分子间相互作用)。为了确定和验证这些规范,进行了仿真,并将结果与实验结果进行了比较。
一旦参数与实验结果相一致,力场就准备好了,可以应用于其他类似化学系统的研究。
马提尼力场于2007年首次发表,其主要目的是模拟复杂的生物分子。2021年,马提尼3.0作为一个有前景的更新版本发布,现在广泛扩展到其他类型的化学品,如聚合物,结合了11个级别的参数,从超级吸引到超级排斥的非键相互作用。

Polymers as a Case Study
除聚乙烯外,聚丙烯是包装工业中需求量最大的聚合物。它是最简单的均聚物之一,其重复单元是丙烯(图2)。了解它的分子结构、力学和化学性质,以及它与其他分子的相互作用,不仅有助于以它为基础生产产品,而且有助于开发具有等效甚至增强性能的新材料。

Materials Studio中尺度模拟使用MS Mesocite,采用NVT和NPT集成,开发了一个基于Martini 3.0的定制力场,该力场将专门针对聚丙烯珠(图3)。我们研究了粗粒珠数量对旋转半径(Rg)和密度随温度变化的影响。将这些结果与实验数据进行比较,以验证新开发的力场(图4)。

Figure 3: Mesostructure containing chains of Coarse-Grained Polypropylene
接下来,我们研究了其他可以满足包装工业需求的常见属性,如水蒸气透过率(WVTR)和氧气透过率(OP)。这两者对于保存储存的货物以及断裂伸长率都是至关重要的,这可能与聚合物的生产或运输有关。

Figure 4: Results obtained in Materials Studio for Polypropylene: a) Radius of gyration, b) Density and c) Diffusion Coefficient of Water
聚丙烯是一种不可生物降解的石油基聚合物,具有高氧扩散和低水蒸气渗透。市场的新趋势是寻找与旧聚合物具有同等或更大优势的生物基和生物降解聚合物。同样的分步计算方法应用于更简单的聚合物,现在被扩展到更复杂的框架,如聚乳酸(PLA)和聚乙二醇(PGA) BIOVIA材料工作室达索Systèmes提供了一个先进的环境,在二氧化硅材料及其性能的发现和分析。使用这种解决方案,过量的实验室实验被最小化,资源被保留,成本被降低,上市时间被改善,创新被迅速推向市场。
Sources:

Packaging covers products to protect them during storage, transportation, distribution, and use. In addition to being a physical enclosure against shocks, temperature changes, and pressure changes, it can also act as a barrier against oxidizing agents. Lastly, it serves as an information and marketing tool.

Packaging Development and
New Trends
The main STEPS for developing new packaging include:
I. Research: choose the material (often a polymer film) and design it;
II.Development:characterize the materials and evaluate their physical and chemical properties, potential impact on the environment, the safety and the regulatory issues of the material on a laboratory (pilot) scale;
III. Manufacturing: produce it on a large scale following the guidance of Quality Control.
Choosing the material for packaging is a long process. Commonly used materials are paper and cardboard, plastics, metals and glass. Plastics corresponded to almost half of the worldwide packaging demand in 2019, counting approximately 44%1. The production of plastics nowadays is larger than the amount the world can deal with big part of it is single use, being disposed in the environment in a matter of minutes after usage, but staying in nature for hundreds of years. Consequently, the idea of sustainability emerges with the necessity for changes in these materials, urging for innovative, recyclable, renewable, and degradable components.
The answers to this challenge must come fast, considering the new consumers’ desires, the volatility of the supply chain, and the consequences to living beings for releasing non-degradable plastics into the environment2. Therefore, simulation and modeling appear as powerful tools to fight against this issue rapidly, including benefits such as enhancing the discovery of new substances, and reducing, not only resources used in the laboratory, but also the time applied in the numerous necessary physical tests.

BIOVIA as a Laboratory and
Industry Solution Tool
BIOVIA Materials Studio? (MS) is a modelling and simulation tool from Dassault Systèmes that provides a list of diverse modules to model different materials, to study their properties, and analyze their behavior. Simulation scales typically go from the atomistic to the meso-scale. Atomistic models give more detailed insights, thus it is a good option to investigate the structure of molecules, internal energy, bonds and angles, for example. While mesostructures are employed for larger systems (Figure 1).
MS Mesocite can model and simulate mesostructures, making it possible to study complex configurations with many components. Such models would be challenging at the atomistic scale in terms of time and system length. In atomic scale, it is necessary to account for every interaction between all atoms in the system; however, at the mesoscale (i.e. coarse-grained models4), the atoms are grouped together, this reducing the degrees of freedom and the system accounts only the interaction between the groups, which greatly decreases the computational cost.
1b. This simplification enables simulations of large-scale systems such as membranes, soft matter, and biopolymers.
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!