Robert Gonzalez, Google。
你能举一些谷歌 Applied Science 所从事的项目类型的例子吗/strong>
我们的工作范围非常广泛。例如,我们与 TAE Technologies 公司合作,优化了他们核聚变实验的参数 (https://www.nature.com/articles/s41598-017-06645-7)。他们拥有独特的设备、大量数据,并能够进行多次迭代实验。通过与他们的科学家的密切互动,我们将机器推向了新的性能体系。
其次,我们与合作伙伴一起提出的基本问题是:我们是否有一种方法或想法,能够让我们利用我们的计算技能来真正影响对该领域至关重要的问题要的是,这不是一个我们一次就可以提出和回答的问题;相反,这是一个我们不断重新审视的问题。我有许多项目一开始看起来很令人兴奋,但是当我们深入细节时,我们失去了对我们的方法是否真的有效的信念。相反,有时我们开始时没有清晰的蓝图,当我们与合作伙伴一起工作时,机会就会成为焦点。
我们如何知道机器学习模型何时出现问题/strong>
这是一个非常重要的问题。任何做过实际机器学习工作的人都知道,95% 的实际工作不是在构建和拟合模型上。这是所有其他工作,仔细检查输入和输出,构成一个真正有用的模型。我们必须以怀疑的态度对待我们的所有模型并质疑它们,就像我们对待任何科学结果一样。这种谨慎的怀疑是必不可少的。我在《自然》的评论和谷歌机器学习指南 (https://developers. google.com/machine-learning/guides/good-data-analysis)中写过关于这些主题的实用建议。
文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34297 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!