据悉,DGX-2可提供的深度学习性能为上代DGX-1(去年9月发布)的约10倍。仅仅半年左右的时间,这一提升实在令人惊叹。“狂人”黄仁勋,狂得有理。
NVIDIA DGX-2售价为 39.9 万美元(约250万人民币),将于今年第三季度正式开放购买。
新一代革命性高速互联技术发布,NVLink说再见/strong>
谈到CPU-GPU、GPU-GPU之间的高速互联,大家首要提的就是NVLink,不过这种现状可能将要发生改变了。此次大会上,NVIDIA NVSwitch作为一个革命性的全新 GPU 互联结构,与大家见面。
Tesla V100 32GB GPU目前可用于所有 NVIDIA DGX 系统。此外,各大计算系统制造商Cray、HPE、IBM、联想、Supermicro和Tyan也宣布将于第二季度内推出各自全新的Tesla V100 32GB系统。Oracle云也宣布计划将于今年下半年在云端提供Tesla V100 32GB。
种种迹象表明,Tesla V100的提升,可能将掀起新一轮数据中心GPU计算平台迭代。当然,客观来讲其规模可能不会太大,这要看企业和组织的实际需求。
软件堆栈更新,推动计算性能提升
英伟达深度学习和 HPC 软件堆栈的更新面向开发者 群免费提供。据了解,当前开发者 群共有超过 82 万名注册用户。此次更新包括新版本的 NVIDIA CUDA、TensorRT、NCCL和cuDNN,以及面向机器人的全新 Isaac软件开发套件。此外,通过与领先云服务提供商的密切合作,各大主流深度学习框架都在持续优化,以充分利用英伟达的GPU计算平台。
今天发布的TensorRT 4推理软件,与谷歌的TensorFlow框架深度融合。据了解,针对计算机视觉、神经 络机器翻译、自动语音识别、语音合成与推荐系统等常见应用,相比CPU,该软件最高可将深度学习推理的速度加快190倍。
另外,最受欢迎的语音识别框架Kaldi现也已针对GPU进行了优化。

深度学习计算≈英伟达
黄教主雷厉风行的个性显然对英伟达也产生了不小的影响,从最初发现GPU在深度学习计算方面的潜力,到如今几乎“无GPU不深度学习”的行业现状,英伟达毅然向人工智能转型,投入大量资源用以研发,不断推陈出新,极大地推动了GPU在人工智能计算的应用,同时更推动了人工智能行业的发展。
本届GTC上关于深度学习的各项重要发布,也再次向我们证明了这一点。基于此,说一句“深度学习计算≈英伟达”不算过分吧。
文章知识点与官方知识档案匹配,可进一步学习相关知识Python入门技能树人工智能深度学习208235 人正在系统学习中 相关资源:滚齿机速查挂轮软件2.1版本.zip_插齿机挂轮计算软件-制造文档类…
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!