TensorFlow 大概已经成为了谷歌的一枚「弃子」。
2015 年,谷歌大脑开放了一个名为「TensorFlow」的研究项目,这款产品迅速流行起来,成为人工智能业界的主流深度学习框架,塑造了现代机器学习的生态系统。
七年后的今天,故事的走向已经完全不同:谷歌的 TensorFlow 失去了开发者的拥护,因为他们已经转向了 Meta 推出的另一款框架 PyTorch。
曾经无处不在的机器学习工具 TensorFlow 已经悄悄落后,而 Facebook 在 2017 年开源的 PyTorch 正在成为这个领域的霸主。
近日,外媒 Business Insider 采访了一系列开发人员、硬件专家、云供应商以及与谷歌机器学习工作关系密切的人,获得了同样的观点。TensorFlow 已经输掉了这场战争,其中有人用了一个鲜明的比喻:「PyTorch 吃掉了 TensorFlow 的午餐。」
专家们表示,鉴于战术失误、开发决策和 Meta 在开源 区中的一系列智取策略,谷歌引领互联 机器学习未来的机会正在逐渐消失。
在 PyTorch 的阴影下,谷歌正在悄悄地开发一个机器学习框架,就是 JAX(曾是「Just After eXecution」的首字母缩写,但官方说法中不再代表任何东西),许多人将其视为 TensorFlow 的继承者。
TensorFlow 起步强劲,推出后受欢迎程度不断提高。Uber 和 Airbnb 等公司以及 NASA 等机构很快就开始将其用于一些复杂的项目,这些项目需要在大量数据集上训练算法。截至 2020 年 11 月,TensorFlow 已被下载 1.6 亿次。
但谷歌持续及增量的功能更新使得 TensorFlow 变得笨拙,且对用户不友好,即使是谷歌内部的那些人、开发人员和与项目关系密切的人都认为如此。随着机器学习领域以惊人的速度发展,谷歌不得不经常使用新工具更新其框架。接近该项目的人士表示,该项目已经在内部传播开来,越来越多的人参与其中,不再专注最初是什么让 TensorFlow 成为首选工具。
专家告诉 Insider,对于许多拥有引领者身份的公司来说,这种疯狂的猫鼠游戏是一个反复出现的问题。例如,谷歌并不是第一家建立搜索引擎的公司,它能够从 AltaVista 或 Yahoo 等前辈的错误中吸取教训。
2018 年,PyTorch 推出了完整版。虽然 TensorFlow 和 PyTorch 都建立在 Python 之上,但 Meta 在满足开源 区的需求方面投入了大量资金。熟悉 TensorFlow 项目的人士说,PyTorch 还受益于专注做一些 TensorFlow 团队错过的事情。
「我们主要使用 PyTorch,它拥有最多的 区支持,」机器学习初创公司 Hugging Face 的研究工程师 Patrick von Platten 说。「我们认为 PyTorch 可能在开源方面做得最好,他们能确保在线回复问题,所有示例都能 work。」
一些最大的组织机构开始在 PyTorch 上运行项目,包括那些曾经依赖 TensorFlow 的机构。不久之前,特斯拉、Uber 等公司就在 PyTorch 上运行了他们最艰巨的机器学习研究项目。
TensorFlow 的新增功能有时会复制使 PyTorch 流行的元素,使得 TensorFlow 对于其最初的研究人员和用户受众来说越来越臃肿。一个这样的例子是它在 2017 年增加了「敏锐执行」,这是 Python 的原生特性,使开发人员可以轻松分析和调试他们的代码。
尝试用 JAX 自救
随着 PyTorch 和 TensorFlow 之间竞争日益激烈,谷歌内部的一个小型研究团队开发了一个新框架 JAX,该框架将更容易访问张量处理单元(TPU)——一种谷歌专门为机器学习和 TensorFlow 定制的芯片。
▲长按加微信群或投稿
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34618 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!