面试官:听说你学Python你给我讲讲Python如何进行内存管理/p>
我:存管理不太清楚额。。。
面试官:那你知道Python垃圾回收吗/p>
我:(尴尬一下后,还好我看到过相关博客)Python垃圾回收引用计数为主、标记清除和分代回收为主。
面试官:那你仔细讲讲这三种垃圾回收技术/p>
我:卒。。。
Python将部分内存用于内部使用和非对象内存。另一部分专用于对象存储(您的int,dict等)。请注意,这已被简化。如果您需要全貌,则可以看CPython源代码,所有这些内存管理都在其中进行。
CPython有一个对象分配器,负责在对象内存区域内分配内存。这个对象分配器是大多数魔术发生的地方。每当新对象需要分配或删除空间时,都会调用该方法。
通常,为list和int等Python对象添加和删除数据一次不会涉及太多数据。因此,分配器的设计已调整为可以一次处理少量数据。它还尝试在绝对需要之前不分配内存。
现在,我们来看一下CPython的内存分配策略。首先,我们将讨论这三个主要部分以及它们之间的关系。
Python的内存分配器
内存结构
在Python中,当要分配内存空间时,不单纯使用 malloc/free,而是在其基础上堆放3个独立的分层,有效率地进行分配。
第0层 通用的基础分配器
以 Linux 为例,第 0 层指的就是 glibc 的 malloc() 这样的分配器,是对 Linux 等 OS 申 请内存的部分。
Python 中并不是在生成所有对象时都调用 malloc(),而是根据要分配的内存大小来改 变分配的方法。申请的内存大小如果大于 256 字节,就老实地调用 malloc();如果小于等 于 256 字节,就要轮到第 1 层和第 2 层出场了。
更细致的过程:垃圾回收机制的算法与实现
第1层 Python低级内存分配器
Python 中使用的对象基本上都小于等于 256 字节,并且净是一些马上就会被废弃的对象。请看下面的例子。
上述 Python 脚本是把从 0 到 99 的非负整数 A 转化成字符串并输出的程序。这个程序会大量使用一次性的小字符串。
在这种情况下,如果逐次查询第 0 层的分配器,就会发生频繁调用 malloc() 和 free() 的情况,这样一来效率就会降低。
因此,在分配非常小的对象时,Python 内部会采用特殊的处理。实际执行这项处理的就是第 1 层和第 2 层的内存分配器。
当需要分配小于等于 256 字节的对象时,就利用第 1 层的内存分配器。在这一层会事先 从第 0 层开始迅速保留内存空间,将其蓄积起来。第 1 层的作用就是管理这部分蓄积的空间。
第1层处理的信息的内存结构
根据所管理的内存空间的作用和大小的不同,我们称最小 的单位为 block,最终返回给申请者的就是这个 block 的地址。比 block 大的单位的是 pool, pool 内部包含 block。pool 再往上叫作 arena。
Arenas内有内存池,池是一个虚拟内存页(4 KB)。这些就像我们书中类比的页面。这些池被分成较小的内存块。
给定池中的所有块均具有相同的“大小等级”。给定一定数量的请求数据,大小类定义特定的块大小。下图直接取自源代码注释:
这一点可以看Pymalloc
- 针对小对象(<= 512 bytes),Pymalloc会在内存池中申请内存空间
- > 512bytes,则会PyMem_RawMalloc()和PyMem_RawRealloc()来申请新的内存空间
例如,如果请求42个字节,则将数据放入48字节大小的块中。
pool
arena 内部各个 pool 的大小固定在 4K 字节。因为几乎对所有 OS 而言,其虚拟内存的页 面大小都是 4K 字节,所以我们也相应地把 pool 的大小设定为 4K 字节。
第1层总结
第 1 层的任务可以用一句话来总结,那就是“管理 arena”。
第2层 Python对象分配器
第 2 层的分配器负责管理 pool 内的 block。这一层实际上是将 block 的开头地址返回给申请者,并释放 block 等。 那么我们来看看这一层是如何管理 block 的吧。
block
pool 被分割成一个个的 block。我们在 Python 中生成对象时,最终都会被分配这个 block (在要求大小不大于 256 字节的情况下)。以 block 为单位来划分,这是从 pool 初始化时就决定好的。这是因为我们一开始利用 pool 的时候就决定了“这是供 8 字节的 block 使用的 pool”。pool 内被 block 完全填满了,那么 pool 是怎么进行 block 的状态管理的呢lock 只有以下三种状态。
- 已经分配
- 使用完毕
- 未使用
第3层 对象特有的分配器
对象有列表和元组等多种多样的型,在生成它们的时候要使用各自特有的分配器。
分配器的总结
垃圾回收机制
来看一下Python中的垃圾回收技术:
- 引用计数为主
- 标记清除和分代回收为辅
如果一个对象的引用计数为0,Python解释器就会回收这个对象的内存,但引用计数的缺点是不能解决循环引用的问题,所以我们需要标记清除和分代回收。
什么是引用计数
- 每个对象都有存有指向该对象的引用总数
- 查看某个对象的引用计数
- 可以使用del关键字删除某个引用
当对象的引用计数达到零时,解释器会暂停,来取消分配它以及仅可从该对象访问的所有对象。即满足引用计数为0的时候,会启动垃圾回收。
但是引用计数不能解决循环引用的问题,就如下的代码不停跑就能把电脑内存跑满:
标记清除
标记清除算法作为Python的辅助垃圾收集技术主要处理的是一些容器对象,比如list、dict、tuple,instance等,因为对于字符串、数值对象是不可能造成循环引用问题。标记清除和分代回收就是为了解决循环引用而生的。
它分为两个阶段:第一阶段是标记阶段,GC会把所有的活动对象打上标记,第二阶段是把那些没有标记的对象非活动对象进行回收。
对象之间通过引用(指针)连在一起,构成一个有向图,对象构成这个有向图的节点,而引用关系构成这个有向图的边。从根对象(root object)出发,沿着有向边遍历对象,可达的(reachable)对象标记为活动对象,不可达的对象就是要被清除的非活动对象。根对象就是全局变量、调用栈、寄存器。

在上图中,可以从程序变量直接访问块1,并且可以间接访问块2和3。程序无法访问块4和5。第一步将标记块1,并记住块2和3以供稍后处理。第二步将标记块2,第三步将标记块3,但不记得块2,因为它已被标记。扫描阶段将忽略块1,2和3,因为它们已被标记,但会回收块4和5。
标记清除算法作为Python的辅助垃圾收集技术,主要处理的是一些容器对象,比如list、dict、tuple等,因为对于字符串、数值对象是不可能造成循环引用问题。
Python使用一个双向链表将这些容器对象组织起来。不过,这种简单粗暴的标记清除算法也有明显的缺点:清除非活动的对象前它必须顺序扫描整个堆内存,哪怕只剩下小部分活动对象也要扫描所有对象。
分代回收(自动)
分代回收是建立在标记清除技术基础之上的,是一种以空间换时间的操作方式。
- Python将所有的对象分为0,1,2 三代
- 所有的新建的对象都是0代对象
- 当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代对象。
同时,分代回收是建立在标记清除技术基础之上。分代回收同样作为Python的辅助垃圾收集技术处理那些容器对象。
Python运行时,会记录其中分配对象(object allocation)和取消分配对象(object deallocation)的次数。
当两者的差值高于某个阈值时,垃圾回收才会启动
- 查看阈值gc.get_threshold()
返回的(700, 10, 10)返回的两个10。也就是说,每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,才会有1次的2代垃圾回收。理论上,存活时间久的对象,使用的越多,越不容易被回收,这也是分代回收设计的思想。
手动回收
具体参考gc模块。
- gc.collect()手动回收
- objgraph模块中的count()记录当前类产生的实例对象的个数
import objgraph
当定位到哪个对象存在内存泄漏,就可以用show_backrefs查看这个对象的引用链。
内存池(memory pool)机制
频繁 申请、消耗 会导致大量的内存碎片,致使效率变低。
内存池的概念就是在内存中申请一定数量的,大小相等的内存块留作备用。
内存池池由单个大小类的块组成。每个池维护一个到相同大小类的其他池的双向链接列表。这样,即使在不同的池中,该算法也可以轻松找到给定块大小的可用空间。
当有新的内存需求时,就会先从内存池中分配内存留给这个需求。内存不够再申请新的内存。
内存池本身必须处于以下三种状态之一:
- 已使用
- 已满
- 或为空。
优点:减少内存碎片,提高效率。
总结
内存管理是计算机的一个非常重要的组成部分。 Python 跟 Java、Go 一样,帮助开发者从语言设计层面解决了这个问题,使得我们不用手动分配和释放内存,这也是这类语言的优势。
- 什么是内存管理,管理方式的方式
- Cpython 的内存管理方式
- 垃圾回收机制
- Python 的引用计数、标记清楚和分代回收的垃圾自动回收方法。
- 最后介绍了手动回收的包和为了提高内存有效使用的内存池机制
希望看完这篇文章的读者能对内存管理和垃圾回收有所兴趣,下一篇文章再见~
参考文章:
- 对内存管理有兴趣的强烈推荐阅读: Memory Management in Python
- 垃圾回收机制的算法与实现
- https://www.cnblogs.com/TM0831/p/10599716.html
- https://www.cnblogs.com/xybaby/p/7491656.html
- https://www.jianshu.com/p/c2c960481011
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!