1. (5′)标题: 购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
—————–
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
——————–
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。
【分析】数据处理
每种物品价格=原价*折扣(0~1),然后求和。得到的结果如果不是整数,则向下取整再+100。
(PS:也可借助word excel 计算器等工具完成)
【答案】5200
2. (7′)标题:等差素数列
2,3,5,7,11,13,….是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少br>
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
【分析】枚举
根据等差数列的通项公式:an=a1+(n-1)*d,可使用两重循环分别枚举数列的第一项a1和公差d,对每一项都需进行素数判定。此外,根据实际问题需要,可设定一个枚举范围:首项[2, 100000],公差[1, 10000],并维护最小公差。
【答案】210
3. (13′)标题:承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少br>
注意:需要提交的是一个整数,不要填写任何多余的内容。
【分析】递推
此题的情景有点类似杨辉三角形。
根据题意,首先自顶向下,将a[r][c]/2后分别加到a[r+1][c]和a[r+1][c+1]上(0
将此题中的数据(X以上的部分)作为输入,即可得到答案。
【答案】72665192664
4. 标题:方格分割
6×6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
【分析】搜索(DFS)
省赛的时候看到此题有点懵,有一丢丢搜索的思路但旋转对称的判别上就gg了。。。
5. (9′)标题:取数位
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
【分析】递归+数位基本操作
每轮操作将待取数位的整数n除以10取整,直到其最后一位t为n的第k位,则t即为所求。
【答案】f(x/10,k)
6. (11′)标题:最大公共子串
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。
比如:”abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是”abcd”,所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
注意:只提交缺少的代码,不要提交已有的代码和符 。也不要提交说明性文字。
【分析】DP
这里使用动态规划法求解串s1和s2的最大公共子串长度,a[i][j]表示串s1的前i个字符组成的串和串s2的前j个字符组成的串的最大公共子串的长度。
s1中的子串s1[0]..s1[i]匹配s2中的子串s2[0]..s2[j],在s1[0]..s1[i-1]和s2[0]..s2[j-1]已经匹配的情况下匹配长度+1,即a[i][j]=a[i-1][j-1]+1,此方程是在s1[i]和s2[j]匹配的情况下才成立的 即s1[i]==s2[j];
而题目代码中给出的判断条件是if(s1[i-1]==s2[j-1]),这是因为对于一个字符串s1来说,它的子串必定”含于”s1[0]..s1[len1-1],而a数组的下标是从1开始的,这样做的好处是不需要进行数组边界处理。试想一下,如果a数组和串s1 s2下标都从0开始,a[0][0]表示s1[0]和s2[0]匹配的情况,则在s1[0]==s2[0]的情况下必然有a[0][0]=a[0-1][0-1]+1(越界!)。解决办法即是进行数组边界处理:
if(s1[i]==s2[j]) {
if(i==0||j==0) a[i][j]=1;
else a[i][j]=a[i-1][j-1]+1;
}
此外,我们对于动态规划求最优解应该有一个概念:最优解不一定要在状态中表示出来。例如在这里,我们只需要把所有子串匹配长度求出来,然后去更新最大长度就可以了。这里的状态并不是当前情况下的最优解。
#include #include #define N 256int f(const char* s1, const char* s2){ int a[N][N]; int len1 = strlen(s1); int len2 = strlen(s2); int i,j; memset(a,0,sizeof(int)*N*N); int max = 0; for(i=1; ifor(j=1; jif(s1[i-1]==s2[j-1]) { a[i][j] = a[i-1][j-1]+1; //填空 if(a[i][j] > max) max = a[i][j]; } } } return max;}int main(){ printf("%dn", f("abcdkkk", "baabcdadabc")); //补充: printf("%dn", f("abc","def"));
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!