不知道大家有没有疑惑,为什么软件能控制硬件?
软硬件结合
初学者,通常有一个困惑,就是为什么软件能控制硬件?就像当年的51,为什么只要写P1=0X55,就可以在IO口输出高低电平?要理清这个问题,先要认识一个概念:地址空间。
寻址空间
什么是地址空间呢?所谓的地址空间,就是PC指针的寻址范围,因此也叫寻址空间。
大家应该都知道,我们的电脑有32位系统和64位系统之分,为什么呢?因为32位系统,PC指针就是一个32位的二进制数,也就是0xffffffff,范围只有4G寻址空间。现在内存越来越大,4G根本不够,所以需要扩展,为了能访问超出4G范围的内存,就有了64位系统。STM32是多少位的?是32位的,因此PC指针也是32位,寻址空间也就是4G。
我们来看看STM32的寻址空间是怎么样的。在数据手册中有一个图,这个图,就是STM32的寻址空间分配。所有的芯片,都会有这个图,名字基本上都是叫Memory map,用一个新芯片,就先看这个图。
最左边,8个block,每个block 512M,总共就是4G,也就是芯片的寻址空间。
block 0 里面有一段叫做FLASH,也就是内部FLASH,我们的程序就是下载到这个地方,起始地址是0X800 0000,大家注意,这个只有1M空间。现在STM32已经有2M flash的芯片了,超出1M的FLASH放在哪里呢?请自行查看对应的芯片手册。
3 在block 1 内,有两段SRAM,总共128K,这个空间,也就是我们前面说的内存,存放程序使用的变量。如果需要,也可以把程序放到SRAM中运行。407不是有196K吗?
其实407有196K内存,但是有64k并不是普通的SRAM,而是放在block 0 内的CCM。这两段区域不连续,而且,CCM只能内核使用,外设不能使用,例如DMA就不能用CCM内存,否则就死机。
block 2,是Peripherals,也就是外设空间。我们看右边,主要就是APB1/APB2、AHB1/AHB2,什么东西呢?回头再说。
block 3、block4、block5,是FSMC的空间,FSMC可以外扩SRAM,NAND FALSH,LCD等外设。
好的,我们分析了寻址空间,我们回过头看看,软件是如何控制硬件的。对于这个疑惑,也可以看此文:
代码是如何控制硬件的?
在IO口输出的例程中,我们配置IO口是调用库函数,我们看看库函数是怎么做的。
例如:
这个函数其实就是对一个变量赋值,对GPIOx这个结构体的成员BSRRL赋值。
assert_param:这个是断言,用于判断输入参数是否符合要求GPIOx是一个输入参数,是一个GPIO_TypeDef结构体指针,所以,要用->获取其成员
GPIOx是我们传入的参数GPIOG,具体是啥?在stm32f4xx.h中有定义。
GPIOG_BASE同样在文件中有定义,如下:
AHB1PERIPH_BASE,AHB1地址,有点眉目了吧?在进一步看看
/*!
再找找PERIPH_BASE的定义
到这里,我们可以看出,操作IO口G,其实就是操作0X40000000+0X1800这个地址上的一个结构体里面的成员。说白了,就是操作了这个地方的寄存器。实质跟我们操作普通变量一样,就像下面的两句代码,区别就是变量i是SRAM空间地址,0X40000000+0X1800是外设空间地址。
这个外设空间地址的寄存器是IO口硬件的一部分。关于如下图STM32的GPIO文章推荐:STM32中GPIO工作原理详解。如下图,左边的输出数据寄存器,就是我们操作的寄存器(内存、变量),它的地址就是0X40000000+0X1800+0x14.
控制其他外设也类似,就是将数据写到外设寄存器上,跟操作内存一样,就可控制外设了。
寄存器,其实应该是内存的统称,外设寄存器应该叫做特殊寄存器。慢慢的,所有人都把外设的叫做寄存器,其他的统称内存或RAM。寄存器为什么能控制硬件外设呢?因为,初略的说,一个寄存器的一个BIT,就是一个开关,开就是1,关就是0。通过这个电子开关去控制电路,从而控制外设硬件。
纯软件-包罗万象的小程序
我们已经完成了串口和IO口的控制,但是我们仅仅知道了怎么用,对其他一无所知。程序怎么跑的?关于程序是怎么在单片机运行的,也可以看此视频:动画演示单片机是如何跑程序的。代码到底放在那里?内存又是怎么保存的?下面,我们通过一个简单的程序,学习嵌入式软件的基本要素。
分析启动代码
函数从哪里开始运行?
每个芯片都有复位功能,复位后,芯片的PC指针(一个寄存器,指示程序运行位置,对于多级流水线的芯片,PC可能跟真正执行的指令位置不一致,这里暂且认为一致)会复位到固定值,一般是0x00000000,在STM32中,复位到0X08000004。因此复位后运行的第一条代码就是0X08000004。前面我们不是拷贝了一个启动代码文件到工程吗?startup_stm32f40_41xxx.s,这个汇编文件为什么叫启动代码?因为里面的汇编程序,就是复位之后执行的程序。在文件中,有一段数据表,称为中断向量,里面保存了各个中断的执行地址。复位,也是一个中断。
芯片复位时,芯片从中断表中将Reset_Handler这个值(函数指针)加载到PC指针,芯片就会执行Reset_Handler函数了。(一个函数入口就是一个指针)
Reset_Handler函数,先执行SystemInit函数,这个函数在标准库内,主要是初始芯片时钟。然后跳到__main执行,__main函数是什么函数?
是我们在main.c中定义的main函数吗?后面我们再说这个问题。
芯片是怎么知道开始就执行启动代码的呢?或者说,我们如何把这个启动代码放到复位的位置?这就牵涉到一个一般情况下不关注的文件wujique.sct,这个文件在wujiqueprjObjects目录下,通常把这个文件叫做分散加载文件,编译工具在链接时,根据这个文件放置各个代码段和变量。
在MDK软件Options菜单Linker下有关于这个菜单的设置。
其实这个文件功能很强大,通过修改这个文件可以配置程序的很多功能,例如:1 指定FLASH跟RAM的大小于起始位置,当我们把程序分成BOOT、CORE、APP,甚至进行驱动分离的时候,就可以用上了。2 指定函数与变量的位置,例如把函数加载到RAM中运行。
从这个基本的分散加载文件我们可以看出:
第6行 ER_IROM1 0x08000000 0x00080000定义了ER_IROM1,也就是我们说的内部FLASH,从0x08000000开始,大小0x00080000。
第7行.o (RESET, +First)从0x08000000开始,先放置一个.o文件, 并且用(RESET, +First)指定RESET块优先放置,RESET块是什么?请查看启动代码,中断向量就是一个AREA,名字叫RESET,属于READONLY。这样编译后,RESET块将放在0x08000000位置,也就是说,中断向量就放在这个地方。DCD是分配空间,4字节,第一个就是__initial_sp,第二个就是Reset_Handler函数指针。也就是说,最后编译后的程序,将Reset_Handler这个函数的指针(地址),放在0x800000+4的地方。所以芯片在复位的时候,就能找到复位函数Reset_Handler。
第8行 *(InRoot$$Sections)什么鬼?GOOGLE啊!回头再说。
第9行 .ANY (+RO)意思就是其他的所有RO,顺序往后放。就是说,其他代码,跟着启动代码后面。
第11行 RW_IRAM1 0x20000000 0x00020000定义了RAM大小。
第12行 .ANY (+RW +ZI)所有的RW ZI,全部放到RAM里面。RW,ZI,也就是变量,这一行指定了变量保存到什么地址。
分析用户代码
到此,基本启动过程已经分析完。下一步开始分析用户代码,就从main函数开始。
1 程序跳转到main函数后:RCC_GetClocksFreq获取RCC时钟频率;SysTick_Config配置SysTick,在这里打开了SysTick中断,10毫秒一次。Delay(5);延时50毫秒。
2 初始化IO就不说了,进入while(1),也就是一个死循环,嵌入式程序,都是一个死循环,否则就跑飞了。
3 在while(1)中调用TestFun函数,这个函数使用两个全局变量,两个局部变量。
然后程序就一直在main函数的while循环里面执行。中断呢?对,还有中断。中断中断,就是中断正常的程序执行流程。相关文章:STM32中断系统。我们查看Delay函数,uwTimingDelay不等于0就死等?谁会将uwTimingDelay改为0?
搜索uwTimingDelay变量,函数TimingDelay_Decrement会将变量一直减到0。
这个函数在哪里执行?经查找,在SysTick_Handler函数中运行。谁用这个函数?
/**
经查找,在中断向量表中有这个函数,也即是说这个函数指针保存在中断向量表内。当发生中断时,就会执行这个函数。当然,在进出中断会有保存和恢复现场的操作。这个主要涉及到汇编,暂时不进行分析了。有兴趣自己研究研究。通常,现在我们开发程序不用关心上下文切换了。
余下问题
1 __main函数是什么函数?是我们在main.c中定义的main函数吗?2 分散加载文件中*(InRoot$$Sections)是什么?3 ZI段,也就是初始化为0的数据段,什么时候初始化?谁初始化?
为什么这几个问题前面留着不说?因为这是同一个问题。顺藤摸瓜!
通过MAP文件了解代码构成
编译结果
程序编译后,在下方的Build Output窗口会输出信息:
编译目标是wujique
C文件compiling,汇编文件assembling,这个过程叫编译
编译结束后,就进行link,链接。
最后得到一个编译结果,9038字节code,RO 990,RW 40,ZI 6000。CODE,是代码,很好理解,那RO、RW、ZI都是什么?
FromELF,创建hex文件,FromELF是一个好工具,需要自己添加到option中才能用
map文件配置
更多编译具体信息在map文件中,在MDK Options中我们可以看到,所有信息都放在Listingswujique.map
默认很多编译信息可能没钩,钩上所有信息会增加编译时间。
map文件
打开map文件,好乱?习惯就好。我们抓重点就行了。
map 总信息
从最后看起,看到没?最后的这一段map内容,说明了整个程序的基本概况。
有多少RO?RO到底是什么?
有多少RW?RW又是什么?
ROM为什么不包括ZI Data?为什么包含RW Data?
Image component sizes
往上,看看Image component sizes,这个就比刚刚的总体统计更细了。
这部分内容,说明了每个源文件的概况
首先,是我们自己的源码,这个程序我们的代码不多,只有main.o,wujique_log.o,和其他一些STM32的库文件。
第2部分是库里面的文件,看到没?里面有一个main.o。main函数是不是我们写的main函数?明显不是,我们的main函数是放在main.o文件。这么小的一个工程,用了这么多库,你以前关注过吗?估计没有,除非你曾经将一个原本在1M flash上的程序压缩到能在512K上运行。
第3部分也是库,暂时没去分析这两个是什么东西。
库文件是什么?库文件就是别人已经别写好的代码库。在代码中,我们经常会包含一些头文件,例如:
#include
#include
#include
这些就是库的头文件。这些头文件保存在MDK开发工具的安装目录下。我们经常用的库函数有:memcpy、memcmp、strcmp等。只要代码中包含了这些函数,就会链接库文件。
文件map
再往上,就是文件MAP了,也就时每个文件中的代码段(函数)跟变量在ROM跟RAM中的位置。首先是ROM在0x08000000确实放的是startup_stm32f40_41xxx.o中的RESET
库文件是什么?
库文件就是别人已经别写好的代码库。
在代码中,我们经常会包含一些头文件,例如:
#include
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!