[读论文]A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification(2021)
一种用于非线性支持向量机分类中特征选择的新型嵌入式最小-最大方法
Asunci′ on Jim′ enez-Cordero
DOI: 10.1016/j.ejor.2020.12.009
文章目录
- 摘要:
- 关键词:
- 总结:
- 1.该论文研究了什么li>
- 2.创新点在哪li>
- 3.研究方法是什么li>
- 4.得到的结论是什么li>
摘要:
In recent years, feature selection has become a challenging problem in several machine learning fifields, particularly in classifification problems. Support Vector Machine (SVM) is a well-known technique applied in (nonlinear) classifification.Various methodologies have been proposed in the literature to select the most
文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34531 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!