[读论文]A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine…

[读论文]A novel embedded min-max approach for feature selection in nonlinear Support Vector Machine classification(2021)

一种用于非线性支持向量机分类中特征选择的新型嵌入式最小-最大方法
Asunci′ on Jim′ enez-Cordero

DOI: 10.1016/j.ejor.2020.12.009

文章目录

  • 摘要:
  • 关键词:
  • 总结:
  • 1.该论文研究了什么li>
  • 2.创新点在哪li>
  • 3.研究方法是什么li>
  • 4.得到的结论是什么li>

摘要:

In recent years, feature selection has become a challenging problem in several machine learning fifields, particularly in classifification problems. Support Vector Machine (SVM) is a well-known technique applied in (nonlinear) classifification.Various methodologies have been proposed in the literature to select the most

文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34531 人正在系统学习中

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年3月1日
下一篇 2022年3月1日

相关推荐