其实看上图就已经非常清晰了。每个数据分析工具都有其侧重的功能点,在不同的数据应用场景下,选择合适的工具,能实现效率最大化。
比如在数据获取时,你可以通过SQL从数据库中提取数据,也可以通过python爬取数据,但你最起码要能熟练掌握SQL;
数据处理时,如果数据量不大,其实Excel是最方便快捷的数据处理工具,在大数据量的情况下,SQL和python的使用更为常见;在大量不可变数据的批处理作业中,hive则最为合适;
分析建模方面,简单的分析,Excel、BI工具已经足够,涉及到建模时,R、SPSS这类专业的统计分析软件,就更能发挥出优势,毕竟建模的思维和统计学是强相关的,当然,python也是一个不错的选择;
在做可视化时,还是建议各位用专业的可视化工具去做,可视化工具的细分上也有很多,像普通的业务数据分析师和业务人员可以使用常见的BI工具tableau、PowerBI、FineBI等去做, 表工程师更适合选择专业的 表工具例如finereport,开发人员还可以选择一些开源的可视化工具例如echart
3大常用工具分析
1、Excel
在很多人眼里,Excel只是一个办公软件,但实际上,大部分人对Excel的认知还不到50%。Excel可以称得上是最全能的数据分析工具之一,包括表格制作、数据透视表、VBA等等功能,保证人们能够按照需求进行分析。
当然也有人认为自己非常精通计算机编程语言,不屑于使用Excel这种工具,因为Excel不能处理大数据。但换个思维想想,我们在日常中用到的数据是否超过了大数据这个极限呢我们国家中小微型企业占了大部分,Excel足够处理绝大多数的数据分析需求。
总结一下,百万级以下的数据处理、分析,Excel是个不错的选择,新人要是想学数据分析,Excel绝对是首选,而且是必选!
2、Python
不可否认的是,python在数据分析领域,确实称得上是一个强大的语言工具。你可以随心所欲地写代码执行你想要的东西。尽管入门的学习难度要高于Excel和BI,但是作为数据科学家的必备工具,从职业高度上讲,它肯定是高于Excel、BI工具的。
尤其是在统计分析和预测分析等方面,Python等编程语言更有着其他工具无可比拟的优势。
新人在初入门时可以先不学Python,很多初级岗位甚至用不上Python,但如果想在这条路上长远发展,它一定是个逃不开的工具。
3、BI工具
BI也就是商业智能,这类工具就是为数据分析而生的。你会发现BI工具的产品设计,几乎是按照数据分析的流程来设计的。先是数据处理、整理清洗,再到数据建模,最后数据可视化,全程围绕数据指导运营决策的思想。由于功能聚焦,产品操作起来也非常简洁,依靠拖拉拽就能完成大部分的需求,没有编程基础的业务人员也能很快上手。
以FineBI为例
可以通过导入数据集或者连接数据库,获取数据
数据处理完毕之后,点击保存,进入仪表板创建组件,即可进行数据可视化分析,可视化作为BI工具的重点功能,里面内置了几十种可视化图表模型,非常全面方便。
推荐好文:
包装成1年工作经验的测试工程师,我给他的面试前的建议如下
自动化测试到底要学什么p>
为何跳槽不考虑腾讯我和鹅厂的一点往事
自动化测试和手动测试哪个更高级p>
新手必看:怎么写一个合格的测试用例p>
python登录接口测试问题记录与解决 ( 干 货 )
文章知识点与官方知识档案匹配,可进一步学习相关知识Python入门技能树首页概览211574 人正在系统学习中
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!