NC:MetaSort通过降低微生物群落复杂度以突破宏基因组组装难题

图2. 应用MetaSort研究口腔微生物组

图4. 重建海藻细菌基因组的进化树和组装验证

02-08 热心肠日

赵方庆团队:突破宏基因组组装难题的新方法MetaSort
原标题:MetaSort通过降低微生物群落复杂度以突破宏基因组组装难题
① 大部分分析宏基因组数据的现有方法有赖于参考基因组,而新的微生物群落的数量远远超出参考数据库的覆盖范围,从复杂的微生物群落做从头合成的宏基因组组装仍然是巨大挑战;② 研究者建立了新的实验和生物信息学平台MetaSort,用于宏基因组样本中细菌基因组的有效组装;③ MetaSort提供基于流式细胞仪和单细胞测序方法学的分类迷你宏基因组方法,并采用新的计算算法以有效地从分类迷你宏基因组并结合原始宏基因组中重建高质量基因组;④ MetaSort在基因组重建和组装中表现优异且无偏性,利用它分析在一种海藻表面定殖的未被探究的菌群,一次性成功重建75个高质量基因组。

英文摘要

Nature Communications [IF:12.124]
MetaSort untangles metagenome assembly by reducing microbial community complexity
DOI: 10.1038/ncomms14306
Abstract:
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities.
First Authors:
Peifeng Ji
Correspondence:
Fangqing Zhao
All Authors:
Peifeng Ji,Yanming Zhang,Jinfeng Wang,Fangqing Zhao
2017-01-23Article

Reference

  1. 文章地址 https://www.nature.com/articles/ncomms14306
  2. 热心肠日 http://www.xunludkp.com/papers/read/1087459080=mobile.search
  3. 赵方庆简介 http://sourcedb.biols.cas.cn/cn/rck/yjdw/201309/t20130923_3936798.html
  4. 赵方庆实验室主页 http://bioinfo.biols.ac.cn/

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2017年7月11日
下一篇 2017年7月11日

相关推荐