【实例简介】
基于有限元分析软件ABAQUS的Johnson-Cook材料模型以及断裂准则模拟高速切削淬硬钢锯齿状切屑形态,并讨论刀具前角和锯齿状切屑形态对切削力的影响。研究表明仿真结果和试验结果是一致的,文中介绍的有限元模拟方法可以准确地模拟并预测高速切削淬硬钢时的切屑形成过程。
刀
4有限元模拟及试验结果
将有限元模拟仿真预测的切屑形态与试验结果进
行比较,如图2、图3、图4所示。预测的切屑形态结果以
积分点处等效塑性应变( equivalent plastic strain,
PEEQ)的形式显示。由图中可以看出,有限元预测的切
屑形态与试验结果非常接近。图中PEEQ的最大值随
刀具前角从-10°改变到10而逐渐减小,说明主剪切
(a)锯齿状切屑显微照片(b)锯齿状切屑形态有限元模拟结果
区内的切屑变形也随刀具前角的增大而减小。刀具前(a) A micrograph of(b) fe simulation result of serrated
角对切屑形态有重要影响,当使用负前角时容易形成
serrated chip
chip morphology
锯齿状切屑。
图4锯齿状切屑形态有限元模拟仿真与
试验结果的对比(
Fig 4 Comparison between experimentally and numerically obtained
8
0.7
0.6
hI
0.5
H
总0.4
(a)锯齿状切屑显微照片(b)锯齿状切屑形态有限元模拟结果
(a)a micrograph of
(b)fe simulation result of serrated
肥0.2
●试验结果 Experimental resul
serrated chip
ch
0:→摸拟结果 Simulation result
图2锯齿状切屑形态有限元模拟仿真与试验
结果的对比(yo=-10)
10
10
Fig 2 Comparison between experimentally and numerically obtained
刀具前角 Tool rake angle(°)
chip morphology (Yo =-10)
图5不同刀具前角条件下的锯齿化程度
Fig 5 Sawtooth degree under different tool rake angles
400
000
3600
320.
l60
000
12000
(a)锯齿状切屑显微照片(b)锯齿状切屑形态有限元模拟结果
4000
(a)A microgram
(b)FE simulation result of serrated
0.000.050.100.150.20
serrated ch
chip morphology
时间Time×103/s
图3锯齿状切屑形态有限元模拟仿真与
图6锯齿状切屑形成时的切削力波动(y6=-10)
试验结果的对比(y0=0)
Fig 6 Efect of tool angle on the cutting force(%o =-10
Fig 3 Comparison between experimentally and numerically obtained
加而逐渐降低。刀具前角对切削力也有很大影响,如图
6、图7和图8所示,平均切削力F的值随着刀具刀前
通常使用锯齿化程度C9表示锯齿状切屑变形和角的增加而逐渐降低。
切屑形态。Gs的定义如下
Gs =(H-h,)/h
(4)
5结论
Gs的测量方法如图2所示,Gs与刀具前角之间的关系
如图5图5说明模拟结果与试验结果符合很好,当切态。使用适合高速变形条件的 Johnson-Cook材料模
削速度和进给量一定时,锯齿化程度随刀具前角的增型、断裂准则和 ABAQUS有限元软件,模拟并测量高速
0.80
LIU Zhan Qiang, WAN Yi, AI Xing. Cutting forces in High Speed Milling
[J]. China Mechanical Engineering, 2003, 14(9): 734-737( In Chi
x0.60
[2]Kishawy H A. An experimental evaluation of cutting temperature during
high speed machining of hardened D2 tool steel[ J]. Machining Science
0.40
and Technology, 2002, 6(1): 67-79
[3]刘战强,艾兴.高速切削刀具磨损表面形态研究[门摩擦学学
〓
0.20
,2002,22(6):468-471
R
LIU Zhan Qiang, Al Xing. Wear characteristics of cutting tools in high
尽0
speed machining[J]. Tribology, 2002, 22(6): 468-471( In Chinese)
0.000.050.100.150.20
[4]赵文祥,龙震海,王西彬,等.高速切削超高强度钢时次表面层
时间 Time x103/s
的组织特性研究[J.航空材料学 ,200,25(4):2025
图7锯齿状切屑形成时的切削力波动(y0=0)
ZHAO Wen Xiang, LONG ZhenHai, WANG XiBin, et al. Study on the
Fig7 Effect of tool angle on the cutting force(yo =00)
metallurgical structure characters of sub-surface layer of ultra-high strength
0.80
alloy steel in high speed milling condition[J]. Joumal of Aeronautical ME
terials, 2005, 25(4): 20-25( In Chinese)
[5] Sung H R, Soo-Ik 0. Prediction of serrated chip formation in metal cutting
0.60
process with new flow stress model for AISI 1045 steellJ]. Joumal of Ma-
terials Processing Technology, 2006,171: 417-422
0.40
[6】赵军,孟辉,王素玉,等.高速切削锯齿状切屑的有限元模
拟[.工具技术,2005,39(1):29-31
0.20
ZHAO Jun, MENG Hui, WANG SuYu, et al. Finite element simulating
analysis of serrated chip formation in high speed cutting[J]. Tool Engi-
0
ing,2005,39(1):29-31( In Chinese)
早0.000050.100.150.20
时间 Time x103/s
[7]Christian H, Svendsen B. Simmlation of chip formation during high-speed
图8锯齿状切屑形成时的切削力波动(=10)
cutting[ J]. Joumal of Materials Processing Technology, 2007, 186: 66
Fig8 Effect of tool angle on the cutting force(%o = 100)
[8] Klocke F, Raedt H W, Hoppe S. 2D-deform simulation of the orthogonal
切削AISI4340钢过程中不同刀具前角条件下的切屑
high speed cutting process[]. Machining Science and Technology, 2001
形态和切削力,讨论刀具前角和切屑形态对切削力的
5(3):323-340.
影响。研究结果表明,模拟结果与试验结果能很好地9)]shkH,AbeE, Sahm a. Material aspects of chip formation in HSC
machining[ J]. Amals of the CIRP- Manufacturing Technology, 2001, 50
(1)
测高速切削淬硬钢时切屑形成过程。
参考文献( References)
[1]刘战强,万熠,艾兴.高速铣削中切削力的研究[J.中国机
械工程,2003,14(9):734-737.
【实例截图】
【核心代码】
相关资源:WorkNCDental牙科编程CAM切削软件.docx-互联 文档类资源-CSDN文库
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!