对话印奇:我们所坚持的不会改变,旷视跳出企业科研“周期律”

相同的剧情同时在中国发生。百度着手组建深度学习实验室,阿里达摩院的前身iDST也开始酝酿,大批四散在海外研究院和高校里的科学家,手握来自祖国的offer和机票。

创投之火也已经点燃,出自清华的三个年轻人——印奇、唐文斌和杨沐决定携手,成立了一家叫旷视的公司;UCLA归来的福州人朱珑,与发小林晨曦发起依图;香港中文大学的校园里,汤教授终于被VC说服,向学生故旧发出召唤;UIUC的华人视觉宗师黄煦涛门下、完成博士学业的周曦,日后以云从创始人闻名工业界。

这是后来中国最知名的四家AI视觉初创企业的起点,也是中国AI创新作用力里,学术界向产业界涌动的代表性例证,并且作为开始的开始,与他们密切相关的微软亚洲研究院、清华和中科院,同样成为黑洞效应的一部分。

AI大牛、学术大牛进入企业的新闻接二连三,每一桩“转会”都能在业内引发轰动——这种轰动,后来还会以他们中的部分转身重返高校,再次成为新闻。

两次轰动之间,就是所谓的企业科研周期律。

新技术兴,意味着机遇和红利,有利可图,给钱给地位才能驱动科研人才更快帮助卡住身位。

而一旦技术成熟,准入门槛降低,技术进入商用落地期,企业内的科研探索也就会更多被作为成本中心视之,地位随之变化,更经不起外部经济大周期的考验,任何风吹草动,都可能动摇到这个成本中心。

所以古今中外,产业研究院基业长青并不常见,贝尔实验室、施乐研究中心,都预研过后来改变世界的技术,但却没有成为红利的最大受益者。

更具体到中国,在AI浪潮之前,一方面局限于历史步伐的遗憾,没能赶上技术创新周期的排位赛,比拼的只能商业模式和市场运营效率;另一方面生存和温饱还都是问题,遑论仓廪足而养科研……

幸也不幸,这是企业科研周期律,第一次如此公开地在中国展现。

但这也是符合旷视初心的选择。印奇回忆,他们创业的底层假设就是“技术驱动”,以及如何才能持续不断打造出人无我有的核心技术,完整穿越技术到商业化的大周期。

印奇说,当时技术所能达到的能力边界、所能带来的商业价值和成果,是非常非常有限的。只有把技术边界不断扩大,才有机会解锁不同的场景。

但即便是这样一个看似特别具象化的小问题,真正做到产业领域的从0到1,达到商业级成熟,也大概要用7~8年时间。

印奇认为,对于AI落地,之前外界高估了从0到1的速度,现在又可能低估了从1到N的效率。

因为不同于之前技术变革,AI落地的从0到1,既包括了技术创新上的从0到1,也包括了商业落地上的从0到1。

这种归类,背后既是旷视对于AI落地的战略战术,也是其对AI落地演进的判断。

其中,基础算法科研和规模算法量产,来自AI的维度,这是旷视技术驱动的核心引擎。传感器、机器人则来自IoT的维度,并且明确的是算法对硬件的定义。

这就意味着在旷视研究院,单点技术的基础研发不会停留在单个算法,它需要可以量产集合成软件,并且进一步封装进硬件,成为一个真正可体验、可直观感受的产品。从人和组织的层面来说,也有完整端到端的体系和支撑,个人与集体之间更容易相辅相承。

所以2+1,覆盖了AI落地从基础算法研究、算法生产到软硬结合的全过程,实际就是旷视选择的AIoT落地战略的闭环方法论,是旷视发展背后支撑起科研到商业化的一体化基石。

这样的排兵布阵在国内并不常见,但恰恰更符合印奇对研究院“作战部队”的定位。

作战,就意味着不会停留在理论上谈兵。

印奇认为,归结起来就是在架构一套清晰的平台游戏规则,这个平台上的所有人,都可以清晰地知道身处何处、可以去往何方。

并且跳出周期律背后,最最底层且关键的还是组织内在的基因和气质,对于基础科研和技术,有着超脱功利主义的热爱。

在旷视CEO看来,如果创始团队不是技术出身,很难能够耐得住低谷期和冷板凳,在技术科研方面持续投入。

他举出微软的例子,浮浮沉沉后又重新站在了潮头,背后很容易被忽视的是微软研究院体系过去30多年里坚定且持续的投入,而这背后的背后,是比尔盖茨对于技术创新的由衷热爱,并且成功完成了技术创新到商业回 的闭环,实现了更大范围内的可持续。

但如果你问微软研究院体系是否就是旷视参照成为的样子又会给出不同的思考。

他觉得微软的研究院体系,其实是商业成功后架构起来的成果,但如果还处于技术创新到商业创业的胶着阶段里,谷歌的体系是更值得效仿的标杆。

印奇解释,谷歌研发体系中有非常浓厚的产品市场视角和工程化视角,能够保证新技术被创造的第一天就对产业应用的方向很明确,这种方向感会让技术科研变得更有生命力。

印奇同时也提到了国内海康威视的研究院,他认为海康诸多创新产品都出自这里。

有意思的是,外界可能仍然在谈论旷视的时候,通常列举类比讨论的是同一批AI创业公司,但在印奇的采访中,他字里行间更多提到的是华为和海康。

事实上,借助华为和海康作为参照系,也能更清晰看懂旷视研发之道,以及中国AI创新当前所处的阶段。

旷视往何处去h1>

旷视现在是一家AIoT的公司,AI代表出身,IoT指向落地。

这是旷视的战略选择,也是过去几年里不断对外传递的认知。

但如果回归技术创业本质,回归企业属性,旷视向前发展的核心竞争力优势什么何能保证创新和科研战略的持续和基业长青p>

依然回到最新的旷视技术开放日现场,答案也在变得清晰。

显然,这是一个临界点时刻,AI算法的生产越过了“流水线”红线,接下来可能会发生的新变化也不难推测:

一,AI算法生产门槛持续降低,利用旷视AIS,会写软件就能写AI算法。

二,数据认知和数据治理重要性进一步提升,数据工程师在AI生产环节的比重进一步提升,他们的工作就是为AIS准备好“数据原材料”。

过去常用AI对落地场景里人力的解放,现在直接实现了供给侧上的降本增效,有了更大规模的AI算法供应,就能服务更大范围和数量的客户,就会进一步带来更大规模的增长变化,甚至会是指数级的。

另外,在旷视最新分享的基础模型科研成果中,“大模型”亦在其列。

创业十年来,旷视对于自动驾驶、智能车从未展露过雄心。

然而就在这两年里,其消费物联 里的诸多客户,纷纷入局造车赛道,旷视AI能力落地的场景也就需要从手机终端开始向汽车终端迁移。

这种因为供应商身份而跟随客户进入新领域的案例,华为不就是最典型的那一个进一步连点成线,旷视研究院这种“作战部队”的风格,也跟华为如出一辙——只不过区别在于华为是解决温饱之后才开始有机会建立研发体系。

以及旷视研究院也确实很能打,刚披露的自动驾驶感知大模型,不论是摄像头感知算法,还是激光雷达感知的神经 络架构,都在业内权威的Benchmark NuSenses上刷新了全球纪录。

最后,旷视“2+1”里的“1”——亦即旷视认养“现金奶牛”之心,也藏不住了。

依然是开放日现场,旷视把IoT那一面、硬件那一面,以AI传感器介绍,甚至也不再避讳就是要用AI实现传感器的重塑、重造和重新定义。

并且这一次,旷视的“硬”还是通过出货量展露的——目前已经和合作伙伴一同在指纹传感器上实现了千万量级的出货量。

75ac49d069b222344f83291f953f3dd7.png

为什么要如此坚定变硬给出的解释是:全链路的整合能力是做算法定义硬件的核心。

但从成本和利润来看,唯有深入硬件的全链路整合,拥有从软件到硬件的全栈能力,才能真正拥有定价权和利润空间。

这个逻辑一以贯之,也就能理解旷视在物流供应链领域正在展开的AIoT落地,那是一个更长链条、更大空间、更强商业回 的闭环场景。

而回到印奇谈论的旷视科研初心那里,只有成为一家成功的商业公司,真正用自己赚来的利润,企业科研和技术创新才会是可持续的。

这是一条AI公司需要验证的路,也是中国公司终于有机会完整试一次的路。

最后的最后,我们还和印奇聊了些旷视之外的话题,完整对话视频敬请期待,这里奉上片段先睹为快~

文章知识点与官方知识档案匹配,可进一步学习相关知识算法技能树首页概览34532 人正在系统学习中

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年6月11日
下一篇 2022年6月11日

相关推荐