快速瞬变脉冲群试验

http://www.autooo.net/autooo/elec/news/2015-11-12/148173_5.html

https://wenku.baidu.com/view/25e3d6573c1ec5da50e270ee.html

https://wenku.baidu.com/view/a390be9151e79b89680226eb.html

瞬态脉冲抗扰度测试常见问题对策及整改措施

4.1 综述

电磁兼容所说的瞬态脉冲是指干扰脉冲是断续性的,一般具有较高的干扰电压,较快速的脉冲上升时间,较宽的频谱范围。一般包括:静电放电、电快速瞬变脉冲群、浪涌冲击等。

由于它们具有以上共同特点,因此在试验结果的判断及抑制电路上有较大的共同点。在此处先进行介绍。

4.1.1 瞬态脉冲抗扰度测试常见的试验结果说明

对不同试验结果,可以根据该产品的工作条件和功能规范按以下内容分类:

A:技术要求范围内的性能正常;

B:功能暂时降低或丧失,但可自行恢复性能;

C:功能暂时降低或丧失,要求操作人员干预或系统复位;

D:由于设备(元件)或软件的损坏或数据的丧失,而造成不可恢复的功能降低或丧失。

符合A 的产品,试验结果判合格。这意味着产品在整个试验过程中 功能正常,性能指标符合技术要求。

符合B 的产品,试验结果应视其产品标准、产品使用说明书或者试验大纲的规定,当认为某些影响不重要时,可以判为合格。

符合C 的产品,试验结果除了特殊情况并且不会造成危害以外,多数判为不合格。

符合D 的产品判别为不合格。

符合B 和C 的产品试验 告中应写明B 类或C 类评判依据。符合B 类应记录其丧失功能的时间。

4.1.2 常用的瞬态脉冲抑制电路:

4.1.2.1 箝位二极管保护电路:

工作原理如图 10。

4.2.2.10 试验结果

若静电放电测试通不过,可能产生如下后果:

(1)直接通过能量交换引起半导体器件的损坏。

(2)放电所引起的电场与磁场变化,造成设备的误动作。

4.2.3 电子产品的静电放电对策及改进要点

我们可以从以下几种抑制ESD 干扰的方法中选择适用的对策:

4.2.3.1 外壳设计:

外壳在人手和内部电路间建立隔离层,阻止 ESD 的发生,金属外壳同时也是阻止ESD 间接放电形成的辐射及传导耦合的关键。

因为静电会穿过孔洞、缝隙放电,所以绝缘外壳的孔洞、缝隙与内部电路间应留有足够的空间,2cm左右的空气隙可以阻止静电放电的发生。对外壳上的孔、洞、排气口等,用几个小孔代替一个大孔,从EMI 抑制的角度来说更好。为减小EMI 噪声,缝隙边沿每隔一定距离处使用电连接。

对金属外壳而言,外壳各部分之间的搭接非常重要,若机箱两部分之间的搭接阻抗较高,当静电放电电流流过搭接点时,会产生电压降,这可能会影响电路的正常工作。

解决这个问题的方法有两个:1)尽量使外壳保持导电连续,减少搭接阻抗。2)在电路与机箱之间增加一层屏蔽,减小电路与机箱之间的电容耦合。内层屏蔽要与外壳连接起来。

4.2.3.2 接地设计:

一旦发生了静电放电,应该让其尽快旁路人地,不要直接侵入内部电路。例如内部电路如用金属机箱屏蔽,则机箱应良好接地,接地电阻要尽量小,这样放电电流可以由机箱外层流入大地,同时也可以将对周围物体放电时形成的骚扰导入大地,不会影响内部电路。

对金属机箱,通常机箱内的电路会通过I/O 电缆、电源线等接地,当机箱上发生静电放电时,机箱的电位上升,而内部电路由于接地,电位保持在地电位附近。这时,机箱与电路之间存在着很大的电位差。这会在机箱与电路之间引起二次电弧。使电路造成损坏。通过增加电路与外壳之间的距离可以避免二次电弧的发生。当电路与外壳之间的距离不能增加时,可以在外壳与电路之间加一层接地的金属挡板,挡住电弧。

如果电路与机箱连在一起,则只应通过一点连接。防止电流流过电路。线路板与机箱连接的点应在电缆入口处。

对塑料机箱,则不存在机箱接地的问题。

4.2.3.3 电缆设计:

一个正确设计的电缆保护系统可能是提高系统 ESD 非易感性的关键。作为大多数系统中的最大的“天线”― I/O 电缆特别易于被ESD 干扰感应出大的电压或电流。从另一方面,电缆也对ESD 干扰提供低阻抗通道,如果电缆屏蔽同机壳地连接的话。通过该通道ESD 干扰能量可从系统接地回路中释放,因而可间接地避免传导耦合。为减少ESD 干扰辐射耦合到电缆,线长和回路面积要减小,应抑制共模耦合并且使用金属屏蔽。对于输入/输出电缆可采用使用屏蔽电缆、共模扼流圈、过压箝位电路及电缆旁路滤波器措施。在电缆的两端,电缆屏蔽必须与壳体屏蔽连接。在互联电缆上安装一个共模扼流圈可以使静电放电造成的共模电压降在扼流圈上,而不是另一端的电路上。两个机箱之间用屏蔽电缆连接时,通过电缆的屏蔽层将两个机箱连接在一起,这样可以使两个机箱之间的电位差尽量小。这里,机箱与电缆屏蔽层之间的搭接方式很重要。强烈建议在电缆两端的机箱与电缆屏蔽层之间360°搭接。

4.2.3.4 键盘和面板:

键盘和控制面板的设计必须保证放电电流能够直接流到地,而不会经过敏感电路。

(2)在易感传输线上(地线在内)串几十欧姆的电阻或铁氧体磁珠;

(3)使用静电保护表面涂敷技术,使ESD 难以机芯放电,经证明十分有效;

(4)尽量使用屏蔽电缆;

(5)在易感接口处安装滤波器;并将无法安装滤波器的敏感接口加以隔离;

(6)选择低脉冲频率的逻辑电路;

(7)外壳屏蔽加良好的接地。

4.3 电快速瞬变脉冲群抗扰度测试常见问题对策及整改措施

4.3.1 电快速瞬变脉冲群形成的机理及其对电子产品的影响

电快速瞬变脉冲群是由电感性负载(如继电器、接触器等)在断开时,由于开关触点间隙的绝缘击穿或触点弹跳等原因,在断开处产生的暂态骚扰。当电感性负载多次重复开关,则脉冲群又会以相应的时间间隙多次重复出现。这种暂态骚扰能量较小,一般不会引起设备的损坏,但由于其频谱分布较宽,所以会对电子、电气设备的可靠工作产生影响。

一般认为电快速瞬变脉冲群之所以会造成设备的误动作,是因为脉冲群对线路中半导体结电容充电,当结电容上的能量累积到一定程度,便会引起线路乃至设备的误动作。

4.3.2 电快速瞬变脉冲群测试及相关要求

不同的电子、电气产品标准对电快速瞬变脉冲群抗扰度试验的要求是不同的,但这些标准关于电快速瞬变脉冲群抗扰度试验大多都直接或间接引用GB/T17626.4-1998 (idt IEC 61000-4-4:1995):《电磁兼容试验和测量技术 电快速瞬变脉冲群抗扰度试验》这一国家电磁兼容基础标准,并按其中的试验方法进行试验。下面就简要介绍一下该标准的内容、试验方法及相关要求。

4.3.2.1 试验对象:

适用于在住宅区和商业区/工业区使用的在运行条件下的电子、电气设备的电快速瞬变脉冲群的抗扰性能测试。

4.3.2.2 试验内容:

对电气和电子设备的供电电源端口、信 和控制端口在受到重复性快速瞬变脉冲群干扰时的性能进行评定。

4.3.2.3 试验目的:

重复快速瞬变试验是一种将由许多快速瞬变脉冲组成的脉冲群耦合到电气和电子设备的电源端口、信 和控制端口的试验。试验的要点是瞬变的短上升时间、重复率和低能量。

对具体的产品来说,试验等级选择往往已在相应的产品或产品族标准中加以规定。

4.3.2.7 试验环境

该标准规定的环境条件:

环境温度:15℃~35℃、相对湿度:25%~75%RH、大气压力:86kPa~106kPa

4.3.2.8 试验布置

标准对试验布置也做出了详细的规定,图 16 所示为用于实验室型式试验的一般试验配置示意图。

图16:用于实验室型式试验的一般试验配置
图16:用于实验室型式试验的一般试验配置

4.3.2.9 试验实施

电源、信 和其他功能电量应在其额定的范围内使用,并处于正常的工作状态。

根据要进行试验的EUT 的端口类型选择相应的试验等级和耦合方式。

使受试设备处于典型工作条件下,根据受试设备端口及其组合,依次对各端口施加试验电压。

每种组合应针对不同脉冲极性进行测试,每种状态的试验持续时间不少于1min。

不同的产品或产品族标准对试验的实施可能根据产品的特点有特定的规定。

4.3.2.10 试验结果

若电快速速变脉冲群测试通不过,可能产生如下后果:造成设备的误动作。

4.3.3 导致电快速脉冲试验失败的原因

从脉冲群试验主要是进行电源线和信 /控制线的传导差/共模干扰试验,只是干扰脉冲的波形前沿非常陡峭,持续时间非常短暂,因此含有极其丰富的高频成分,这就导致在干扰波形的传输过程中,会有一部分干扰从传输的线缆中逸出,这样设备最终受到的是传导和辐射的复合干扰。

电快速脉冲试验波形的上升沿很陡,包含了很丰富的高频成分。另外,由于试验脉冲是持续一段时间的脉冲串,因此它对电路的干扰有一个累积效应,大多数电路为了抗瞬态干扰,在输入端安装了积分电路,这种电路对单个脉冲具有很好的抑制作用,但是对于一串脉冲则不能有效地抑制。

电快速脉冲对设备影响的原因有三种,包括:

a)通过电源线直接传导进设备的电源,导致电路的电源线上有过大的噪声电压。当单独对火线或零线注入时,在火线和零线之间存在着差模干扰,这种差模电压会出现在电源的直流输出端。当同时对火线和零线注入时,仅存在着共模电压,由于大部分电源的输入都是平衡的(无论是变压器输入,还是整流桥输入),因此实际共模干扰转变成差模电压的成分很少,对电源的输出影响并不大。

b)干扰能量在电流线上传导的过程中,向空间辐射,这些辐射能量感应到邻近的信 电缆上,对信 电缆连接的电路形成干扰(如果发生这种情况,往往会在直接向信 电缆注入试验脉冲时,导致试验失败)。

c)干扰脉冲信 在电缆(包括信 电缆和电源电缆)上传输时产生的二次辐射能量感应进电路,对电路形成干扰。

4.3.4 通过电快速脉冲试验的整改措施

针对脉冲群干扰,主要采用滤波(电源线和信 线的滤波)及吸收(用铁氧体磁芯来吸收)。采用铁氧体磁芯吸收的方案非常便宜也非常有效,但要注意做试验时铁氧体磁芯的摆放位置,就是今后要使用铁氧体磁芯的位置,千万不要随意更改,因为脉冲群干扰不仅仅是一个传导干扰,更麻烦的是它还含有辐射的成分,不同的安装位置,辐射干扰的逸出情况各不相同,难以捉摸。一般将铁氧体磁芯用在干扰的源头和设备的入口处最为有效。下面根据端口的不同分别进行探讨。

4.3.4.1 针对电源线试验的措施

解决电源线干扰问题的主要方法是在电源线入口处安装电源线滤波器,阻止干扰进入设备。

快速脉冲通过电源线注入时,可以是差模方式注入,也可以是共模方式注入。

对差模方式注入的一般可以通过差模电容(X 电容)和电感滤波器加以吸收。

若注入到电源线上的电压是共模电压,滤波器必须能对这种共模电压起到抑制作用才能使受试设备顺利通过试验。

下面是用滤波器抑制电源线上的电快速脉冲的方法。

a)设备的机箱是金属的:

b)设备机箱是非金属的

如果设备的机箱是非金属的,必须在机箱底部加一块金属板,供滤波器中的共模滤波电容接地。这时的共模干扰电流通路通过金属板与地线面之间的杂散电容形成通路。如果设备的尺寸较小,意味着金属板尺寸也较小,这时金属板与地线面之间的电容量较小,不能起到较好的旁路作用。在这种情况下,主要靠电感发挥作用。此时,需要采用各种措施提高电感高频特性,必要时可用多个电感串联。

4.3.4.2 针对信 线试验应采取的措施

快速脉冲通过信 /控制线注入时,由于是采用容性耦合夹注入,属共模注入方式。

a)信 电缆屏蔽:

从试验方法可知,干扰脉冲耦合进信 电缆的方式为电容性耦合。消除电容性耦合的方法是将电缆屏蔽起来,并且接地。因此,用电缆屏蔽的方法解决电快速脉冲干扰的条件是电缆屏蔽层能够与试验中的参考地线面可靠连接。如果设备的外壳是金属的并是接地的设备,这个条件容易满足。当设备的外壳是金属的,但是不接地时,屏蔽电缆只能对电快速脉冲中的高频成分起到抑制作用,这是通过金属机壳与地之间的杂散电容来接地的。如果机箱是非金属机箱,则电缆屏蔽的方法就没有什么效果。

b)信 电缆上安装共模扼流圈:

共模扼流圈实际是一种低通滤波器,只有当电感量足够大时,才能对电快速脉冲群有效果。但是当扼流圈的电感量较大时(往往匝数较多),杂散电容也较大,扼流圈的高频抑制效果降低。而电快速脉冲波形中包含了大量的高频成分。因此,在实际使用时,需要注意调整扼流圈的匝数,必要时用两个不同匝数扼流圈串联起来,兼顾高频和低频的要求。

c)信 电缆上安装共模滤波电容。这种滤波方法比扼流圈具有更好的效果,但是需要金属机箱作为滤波电容的地。另外,这种方法会对差模信 有一定的衰减,在使用时需要注意。

d)对敏感电路局部屏蔽。当设备的机箱为非金属机箱,或者电缆的屏蔽和滤波措施不易实施时,干扰会直接耦合进电路。这时只能对敏感电路进行局部屏蔽。屏蔽体应该是一个完整的六面体。

4.4 浪涌冲击抗扰度测试常见问题对策及整改措施

4.4.1 浪涌冲击形成的机理

4.4.1.1 开关瞬态

系统开关瞬态与以下内容有关:

a)主电源系统切换骚扰,例如电容器组的切换;

b)配电系统内在仪器附近的轻微开关动作或者负荷变化;

c)与开关装置有关的谐振电路,如晶闸管;

d)各种系统故障,例如对设备组接地系统的短路和电弧故障。

4.4.1.2 雷击瞬态

雷电产生浪涌(冲击)电压的主要原理如下:

a)直接雷击于外部电路(户外),注入的大电流流过接地电阻或外部电路阻抗而产生电压;

b)在建筑物内、外导体上产生感应电压和电流的间接雷击(即云层之间或云层中的雷击或击于附近物体的雷击,这种雷击产生的磁场);

c)附近直接对地放电地 雷电入地电流耦合到设备组接地系统的公共接地路径。当保护装置动作时,电压和电流可能发生迅速变化,并可能耦合到内部电路。

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2017年4月11日
下一篇 2017年4月11日

相关推荐