上期内容回顾:
01. 抖动研究的源起
02. 抖动测试和分析的基本方法和经典理论
03. 抖动测试的演进和新挑战(上)
点击回顾? 「干货」沧海桑田话抖动(上)
上期关于抖动测试的专题介绍,得到了不少测试行业从业者的喜爱。本期继续推出抖动测试的下篇,主要包括如下主题:
03. 抖动测试的演进和新挑战(下)
04. 影响抖动测试结果和精度的因素
05. 从抖动测试到相噪测试——实时示波器的新战场
03 抖动测试的演进和新挑战(下)
上期提到,数据中存在XTALK引起ABUJ抖动时频谱法分析RJ产生误差。那么Keysight EZJIT Plus如何解决这一新的问题和挑战呢?
在EZJIT Plus软件里增加了Tail Fit方法进行RJ提取,如下图所示 :
图17 EZJIT PLUS软件里增加Tail Fit法提取RJ
这一方法指的就是在实时示波器的抖动分析软件里采用双狄拉克模型法进行RJ提取 :
图18 Tail Fit法RJ拟合示意图
在以往未使用高斯拟合的原因是由于总直方图中的点稀缺,曲线拟合的点数仍然很少,它会给你带来不稳定的结果。下图显示了针对一个数据信 存在和不存在串扰情况下分别采用频谱法和高斯尾部拟合法对比的结果。
左边显示的是无串扰情况下分别采用频谱法和高斯法结果相近,右边显示在有串扰情况下,频谱方法得到的RJ明显偏大,采用高斯法后得到的RJ结果就显然回归正常。
图19 高斯法和Tail Fit两种方法分别对存在和不存在串扰引起的ABUJ分离差异对比
除了采用高斯尾部拟合法外,为了获得更高精度的测量,还可以先关闭相邻通道的串扰源,进行一次抖动测量并记录RJrms结果,打开串扰源,在下图中指定RJrms,然后再进行抖动测量,ABUJ就被归入有界抖动,不会被归入RJ成分并可准确得到,而TJ也可准确得到。
图20 EZJIT PLUS软件里手动去除RJ分析ABUJ示意图
近10年左右,除了在信 水平方向进行更加深入的抖动分析外,在信 的垂直方向进行噪声和干扰分析也慢慢开始兴起,但相比水平方向的抖动对眼图关闭和系统BER影响的理论比较成熟,业界在垂直方向噪声和干扰对垂直方向眼图闭合分析的理论依然在发展中。
垂直方向噪声和干扰对信 传输的影响的分析功能目前在Keysight采样示波器N1000系列的 N1010100A软件包和实时示波器的 EZJIT Complete 软件中均可支持:
图21 EZJIT软件3个等级提供强大的测量和分析能力
04 影响抖动测试结果和精度的因素
抖动测量和分析在今天的串行数据电路设计和测试中的重要意义不言而喻,因此如何进行精确测量当然也成为每个工程师都关心的问题。
首先针对被测信 在示波器上要做出正确的测量设置。这些正确设置包括恰当的垂直刻度设置,通常建议信 在垂直刻度方向占满7格左右即用足垂直显示精度。
水平方向主要包括足够的采样率设置和存储深度,对实时采样示波器而言,采样率应当满足所用带宽的2.5倍以上。存储深度不足导致波形采集数据不足可能会导致实时示波器不能进行正确的时钟恢复。太长的存储深度则会导致数据波形过大,运算速度变慢。
因此建议按照规范或标准数据量捕获波形进行分析,比如部分标准或规范通常推荐1M UI进行分析,USB3.x和PCIE3.0即是如此,当然到PCIE4.0已经更改为2M UI。
对一般性串行数据抖动分析,应当达到100K UI量级数据以上。有时部分标准需要进行SSC(扩频时钟)测量,如果进行手动分析,建议根据需要测量的SSC周期数和所用采样率计算恰当的采样深度。
另外针对信 的阈值(Threshold)设置和迟滞(Hysteresis)设置也非常关键,通常建议设置信 幅度一半的电平为阈值,差分总线通常为0V。
针对一些有共模偏置的信 建议先手动测量信 幅度和共模电压以选取准确的阈值。准确迟滞设置也非常重要,因为可以避免示波器将信 边沿上的一些因为反射导致的不连续误判为ISI抖动的一个bit。
如下图示,左边设置的迟滞门限较低,因此会将波形上升沿上的一个回勾当作一个有效bit,显然这会被归入ISI抖动,右边迟滞设置电平门限拉高就会对这个回勾忽略不计。
图22 准确的迟滞设置避免将波形回勾计为一个bit的ISI抖动
如果想获得准确TIE测量结果,还有一个必须强调的是准确的遵循被测信 规范设置的时钟恢复算法,这是实时示波器进行抖动分析和分解的重要基础。相关信息请阅读各标准规范。
其它还包括在上期提到的关于EZJIT Plus如何进行抖动分解的一些设置,比如ISI滤波器的大小(Filter Size),Rj带宽等等。
总之,如果要进行一次准确的抖动分析和测量,涉及的知识非常广泛的,操作也略显繁琐。因此在对抖动测试不甚熟悉的情况下建议使用示波器上的抖动测试向导(Setup Wizard),抖动向导会对信 进行自动设置,包括信 刻度及阈值和迟滞等。建议安装Keysight实时示波器离线软件D9010BSEO进一步深入了解。
除了操作层面外,仪器的哪些指标对抖动测量的结果和精度会有比较大的影响呢?或者如何选择一个恰当的示波器完成预设的目标或工作呢?
>>> 首先是测量系统的恰当带宽。
测量系统带宽包括示波器和探头与电缆及夹具等连接部件等,如果不符合标准和规范要求,低于规范要求带宽则会带来信 输入链路额外的ISI抖动。
在今天已经普遍应用的针对电缆夹具和探头的去嵌技术如N2809A—Precision Probe和包含InfiniiSim的D9020ASIA分析套件也可以部分解决这些效应,当然也会带来额外的副作用即同步放大了仪器的本底噪声,必然带来额外误差。过高带宽也是不推荐的,因为会引入更多的高频带噪声。
>>> 其次实时示波器的采样率也会有影响。
通常更高采样率会有更高精度。显而易见,更高采样率会有更高的分辨率和边沿解析度,对最终的抖动分析结果会有影响。
下图是源自第三方的Jitter Labs针对PCIE Gen4 /Gen5时钟测量结果对比,可以看到Keysight 90000A和90000X(当前替代型 是V系列)与T公司及L公司另两款产品测试结果对比。
红色为20/25GSa/s,蓝色为40G/50GSa/s,绿色为80/100GSa/s,Post-Channel和Pre-Channel指对PCIE Gen4/Gen5时钟测试的不同测试点位置。很明显在同型 产品上更高采样率得到的结果更好。K公司产品对比T/L产品相对结果明显更优,这又是什么原因呢?
图23 不同型 示波器不同采样率测试结果对比
>>> 第三,仪器的本底噪声和固有抖动。
Keysight公司产品相比业界其它公司产品有更低的噪声本底和固有抖动,因此在上图Jitter Lab测量对比结果中显示出更高的精度。
一般实时示波器在采用频谱法进行抖动分析时都会采用功率谱密度积分得到RJrms值,频谱法进行功率谱积分时会将示波器的宽频本底噪声带入到RJ的分析结果中,带来更多的误差。而仪器的固有抖动也是误差之源,参考如下公式 :
从公式中还可以看出噪声本底和信 本身的跳变斜率(Slew Rate)相关。在今天越来越低的信 幅度,越来越快的边沿,越来越低的裕量测试场景下,典型如PCIExpress规范里对CC CLK的CC Jitter描述,在32GT/s,CC Jitter Limits达0.15ps RMS,对实时示波器的测量精度提出了更高要求 :
图24 PCIExpress5.0规范对CC Jitter Limit的要求
为了满足这些标准和规范的最新要求,业界除了在算法上做出一些改进和提高外,Keysight公司在EZJIT Plus/Complete软件里提供了去除示波器本身的随机抖动和噪声的选项,从而去除测量误差提高测量精度。
图25 EZJIT COMPLETE软件提供去除示波器随机抖动和噪声功能
>>> 另外捕获足够时长的波形用于数据分析也是抖动测试中的一个关键。
因为足够的波形数据和捕获时长除了可以捕获更多的时钟周期或数据UI进行更准确的抖动分析外也意味着可以捕获更低频的抖动因为捕获的整个波形周期更长,这也是示波器长存储的重要价值之一。
因此在选择和购买示波器的时候,推荐选择具有更长存储深度配置的产品。
以上谈到了实时示波器的4个影响抖动测量精度的主要因素或指标,虽然抖动软件的分析算法一直与时代同步进行提高和改进,但是在实际工作中尽量选择更高精度的设备依然是获得高精度的测量结果的最有力保障。
05 从抖动测试到相噪测试——实时示波器的新战场
实时示波器因为其高采样率下长存储和重复单次采样能力在抖动分析应用领域成为主力设备。随着数据速率的持续提高,裕量的下降,比如前面提到的PCIE5.0规范中关于CC Jitter 的要求,仅从时域角度进行测量已经显得捉衿见肘。
另一方面随着近几年实时示波器的ADC位数从8bit向10bit全面升级,实时示波器的无杂散动态范围(Spurious Free Dynamic Range)等指标得到了全面提高,典型如Keysight公司的 S和UXR系列实时示波器已经实现了从500MHz–8GHz和13–110GHz 硬件10bit ADC的全天候覆盖,其本身的SFDR指标均非常优异。因此实时示波器也开始进入频域指标测量领域,比如相位噪声,Phase Noise。
首先来看什么是相位噪声?
在维基百科中,相位噪声的定义是“时域不稳定性(抖动)导致波形在相位上发生快速、短期、随机的波动,这种波动在频域中的表现即为相位噪声”。这一术语中的“噪声”一词告诉我们,它指的不是杂散或确定性波动。
定义中提到的“短期”是为了与确定时钟源纯净度时所用的其他方法加以区别,例如以百万分之几(ppm)为单位的稳定度。它通常是以更大的时间长度进行测量,例如秒或分钟。
图26 理想与真实信 在时域和频域的对比
虽然有许多技术术语可以量化相位噪声,但最常采用的指标之一是“单边带(SSB)相位噪声”,L(f)。在数学上,美国国家标准与技术研究院(NIST)将L(f)定义为从载波的偏移频率处的功率密度与载波信 的总功率之比,单位为dBc/Hz :
图27 基于相噪测量得到相位抖动
对于传统的数字领域的公司和工程师而言,如果为了测试相位噪声而专门进行相位噪声测量仪器的投资,很明显其性价比是不高的。因此发掘现有设备的潜能让其发挥更大作用,也是一个不错的选择,而普遍存在的实时示波器当然是最佳的选择。
相比其它频域仪器测量方法,采用实时示波器进行相噪分析的优点除了节约投资外主要还有实时示波器可以测量方波时钟信 或者带SSC(扩频时钟)的时钟信 相噪,尤其是SSC扩频时钟在高速串行数据标准如PCIExpress/USB等参考时钟信 里是相当常见的。
另外采用实时示波器的方法可以测量100MHz以上的时钟频率偏移,而频域仪器一般限定在100MHz范围内。针对数字域常见的差分信 ,示波器可以采用高阻探头直接探测或者采用2个通道输入再进行差分运算,无需额外的附件Balun(巴伦)。
当然实时示波器还可以直接测量传递到数据信 上的相位噪声。实时示波器还有强大的数据存储和记录能力可以保存波形用于传统的数字分析工具比如PCIExpress 标准的CLK Jitter Tool等。
总而言之,采用实时示波器进行相位噪声的分析和测试,不仅可以发挥实时示波器的作用节约投资,而且针对频域测量仪器在数字标准和信 上的不足提供了更多优点:
Keysight公司在2018年推出了基于Infinium系列实时示波器的D9010/D9020JITA抖动/噪声/相噪分析软件,除了包含EZJIT Complete的全部功能外,还提供了功能强大的相噪测试功能:
图28 D9010/D9020 JITA软件相噪测试设置
图29 D9010/9020 JITA 单边带相位(SSB)噪声测量结果
基于相噪测量结果,然后在测量菜单下选择FFT →Phase Jitter项目,参照下图,选择感兴趣的频带,就可以得到Phase Jitter测量结果,如下图示 :
图30 基于相噪测试结果的相位抖动测量
为了获得更精确的测量结果,相噪测试时还可以进行2-通道互相关降低仪器本底噪声。时钟信 通过功分分成两个信 输入到示波器的两个通道,可以执行双通道互相关技术。
时钟信 可以是单端或差分(如果差分信 则建议分别针对正负信 经过功分后用SMA电缆接入1-3或2-4通道)。然后在通道上执行互相关操作,如下图30所示。
通过每个通道的DUT噪声是相干的并且不受互相关的影响,而每个通道产生的内部噪声是不相干的,并且以或者的速率通过互相关运算减少,其中M是进行波形相关运算的采集数量,采用的波形相关运算数量越大则进行平均运算时的速度越慢。
图31 双通道互相关降低仪器本底噪声示意
图32 相关运算数量和降低噪声性能对应关系
相噪测试为实时示波器进入频域测量打开了另一扇窗户,尤其是针对数字和时域信 日益增长的频域测试需求。
安装了D9010/D9020 JITA选件的Keysight Infinium系列实时示波器是当前业界唯一提供相噪测试功能的实时示波器平台。D9010JITO则是配合可安装在PC上的离线示波器软件D9010BSEO的抖动和相噪分析选件。
如果您想体验D9010/D9020 JITA功能强大的抖动/噪声分析和分解软件,以及最新相噪测试应用软件
请登录www.keysight.com查找并下载D9010BSEO–Infinium Offline软件并安装在PC上,您可以直接在官 上申请30天免费试用许可,欢迎登记填写调查问卷申请更长试用许可。
您也可以在www.keysight.com为您的Keysight Infinium实时示波器申请30天的D9010/9020JITA试用许可(请注意示波器的平台软件版本必须在6.30以上)。
购买新机时则可以直接购买D9010/9020JITA选件,将会包含所有抖动/噪声分析分解及相噪分析和测试功能。另外,Keysight还提供:
结语
因为篇幅关于实时示波器的经典抖动分析分解算法和说明只是将基本步骤和理论做了简单陈述,进一步的深入研究请查阅相关参考文献。
参考文献:
Ref[1]: Jitter Analysis: The dual-Dirac Model,RJ/DJ,and Q-Scale. Keysight Technologies,5989-3206EN
Ref[2]: Finding Sources of Jitter with Real-Time Jitter Analysis. Keysight Technologies,5888-0740EN
Ref[3]: Analyzing Jitter Using EZJIT Plus Software. Keysight Technologies,5989-3776EN
Ref[4]: Selecting RJ Bandwidth in EZJIT Plus Software. Keysight Technologies,5989-5065EN
Ref[5]: Choosing the ISI Filter Size for EZJIT Plus Arbitrary Data Jitter Analysis. Keysight Technologies,5989-4974EN
Ref[6]: PCI ExpressTM Jitter Modeling Revision 1.0RD, PCI-Sig.
Ref[7]: PCIE4.0 Base Specfication.PCI-Sig.
Ref[8]: PCIE5.0 Base Specification.PCI-sig.
Ref[9]: UXR Series Datasheet.Keysight Technologies,5992-3132EN
Ref[10]: Infiinum Help Manual
长按,识别上方二维码关注是德科技
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!