NVIDIA RTX 40系显卡终于与我们见面,按照以往的惯例,通常都是游戏级别的“80”型 显卡率先与我们见面,不过此次最先推出的却是“90”级别的产品。
其实根据目前的情况来看,GeForce RTX 4090率先推出,也是为了照顾到仍在市售的RTX 30系产品。还记得在RTX 30系显卡推出时,大部分RTX 20系显卡其实已经停产,整体的更新换代节奏明显。
而目前GeForce RTX 3090的价格基本不足万元,也已经停产。所以在此时推出GeForce RTX 4090,其实并不足以影响到RTX 30系整体的销售。
每一次“90”级别的产品NVIDIA官方,其实很少宣传游戏领域,不过此次在性能悬殊如此大的情况下,即便是NVIDIA对于它的游戏性能也是侃侃而谈。
01 NVIDIA GeForce RTX 4090 概览
今年的GeForce RTX 4090在外观上变化不大,不过包装还是一如既往的精美,并且此次NVIDIA还加入了环保的理念。
外包装依旧采用了哑光黑色硬纸盒,而且可以清楚地看到“GeForce RTX 4090”字体的变化,GeForce RTX的英文字样更圆滑,而数字则更“厚实”。
从侧面可以看到,本次显卡的包装除了外圈的硬纸盒,内部全部采用了黑色瓦楞纸。在盒子两侧还有黑色胶带防止运输过程损坏。
打开后的包装有点像帐篷形状,这张“性能怪兽”静静躺在那里,而且有意思的是,显卡周围的装饰纹路自带“震惊”效果。
拿出显卡后,包装内还附赠了一根16pin转8pin*4的转接线。其实本次GeForce RTX 4090的建议电源与GeForce RTX 3090 Ti相同,都是850W,所以如果在RTX 30系配备了高瓦数电源的玩家大可以放心升级。
NVIDIA GeForce RTX 4090 FE显卡的整体尺寸为304×137×61mm,占用3槽空间。其实长度相较RTX 30系显卡没有变化,甚至比RTX 3090 Ti还少了10mm,但整体的质感和分量都有所提升,整卡约为2.2kg,这还是以简约设计著称的公版,很难想象各家AIC的显卡到底会有多重。
NVIDIA GeForce RTX 4090的整体设计依旧沿用了RTX 30系显卡的外观,但由于架构升级,发热量增大,散热自然也需要同步升级。本次的GeForce RTX 4090风扇尺寸再次增大,基本已经达到了显卡整体框架的直径,而在散热风扇增大的基础上,最大气流动态增加20%,同噪音等级的气流动态增加15%。
视频输出接口上,依旧采用了HDMI 2.1 + DP 1.4a*3的四接口设计。HDMI 2.1可支持4K 120Hz HDR、8K 60Hz HDR,对于目前阶段的产品来说完全够用。
至于呼声较高的DP 2.0,其实目前绝大部分消费级游戏显示器都没有实装,且DP 1.4a标准也能够支持8K 60Hz刷新率的显示器。所以,综合来看,绝对够用。
况且,我们真的需要那么极致的规格吗?羊毛出在羊身上的道理大家都懂。
另外由于公版采用的双轴流散热系统,所以在视频输出接口部位能够看到大量的散热鳍片,这一点与上一代相同。
本次GeForce RTX 4090的整卡功耗为450W,采用单16pin的辅助供电。目前已有部分电源厂商发布了最新的ATX 3.0标准高端电源,自带12VHPWR的16pin供电接口,最高可支持600W供电。所以不出意外的话,或许下一代显卡也将采用这样的单16pin来供电。
虽然目前所有显卡厂商基本都会附赠一根转接线,不过8pin*4的杂乱程度可想而知,有条件的话,一个ATX 3.0标准的电源简直不要太整洁。
需要注意的是,目前适用于RTX 30系列的12pin接口和电源转接器与RTX 40系列显卡不兼容。
最后来看一下GeForce RTX 4090内部的PCB板,依旧采用了“深V”的异形PCB,依旧紧凑的排布了所有的元器件,没有一点浪费,并且在如此紧凑的环境下搭载了20+3相供电。整整齐齐,堪称艺术品。
NVIDIA同时还强调,在高负载下,GeForce RTX 4090的供电更稳定,不会出现剧烈的电压、电流波动。
02 Ada Lovelace 姓甚名谁?
下面我们来看一下此次推出NVIDIA Ada Lovelace架构,我们先从Ada Lovelace这个人讲起,相较于Ampere,这位似乎大家更陌生一些。
Ada Lovelace(1815-1852)是英国数学家、计算机程序创始人,建立了循环和子程序概念,被称为世界上第一位程序员。
Ada从小对数学有极高天赋,其父称她为“平行四边形公主”,后来的合作伙伴Charles Babbage称她为“数字女巫”。在19岁时Ada嫁给了自己曾经的科学家庭教师,婚后的她对数学热情不减。
1842年到1843年花了9个月时间翻译了Babbage的《分析机概论》的备忘录,写了很多注记,其中给出了用计算机进行Bernoulli数求解的详细说明。由此,Ada被广泛认为是世界上第一位程序员。
而以她名字命名的语言——ada语言,已经成为了美国军方开发战斗机等尖端武器的语言。
从几行简短的生平简介中,不难看出Ada的生命虽然只经历了短暂的37个春秋,但却足以被后人铭记。
这也是为什么此次NVIDIA RTX 40的先行宣传中,用到了“以未来敬传奇”的slogan,下面我们详细剖析一下,这次的Ada Lovelace还有哪些创新和超越。
03 NVIDIA Ada Lovelace架构
本次发布的GeForce RTX 40系显卡由全新的NVIDIA Ada Lovelace架构打造,采用TSMC 4nm定制工艺(TSMC 4 nm NVIDIA Custom Process),旗舰核心AD102达到了恐怖的760亿个晶体管,而在RTX 30系显卡中为280亿个。
与上一代NVIDIA Ampere相比,NVIDIA Ada Lovelace在相同功率下,具有2倍以上的性能提升。最高可达到90-TFLOPS的着色器数据吞吐量,而本次发布的GeForce RTX 4090则达到83-TFLOPs,相比上一代NVIDIA Ampere则只有40-TFOPs。
完整的AD102核心共有18432个CUDA,其中包含12个图形处理集群(GPCs), 72个纹理处理集群(TPCs), 144个流式多处理器(SMs)。144个第三代光追核心(RT Cores)、576个第四代张量核心(Tensor Cores)。另外可以看到Boost频率也从1.9GHz猛增到了2.5GHz。
另外一点在架构图上没有体现的是,AD102核心还包含288个FP64双精度浮点核心(每SM 2个),用来确保FP64代码正确处理,包括FP64张量核心代码。
通常来讲,单精度浮点运算会用于深度学习模型训练,而双精度浮点运算则用于数值模拟工作。通常游戏卡都会砍掉FP64,这既节省了成本,又对游戏本身没有影响。而专业卡都保留有FP64,目的就是为了精度更高训练与计算。
此次资料中只提到了AD102核心搭载了288个FP64,尚不知道后续的推出的产品有无变更。
了解了完整的GA102核心,我们再来看一下RTX 4090的核心,其实知道了RTX 4090的参数,我们大概也能了解到后续可能推出的“Ti”系列究竟相差在哪。
相比完整的GA102来说,RTX 4090共有16384个CUDA,其中包含11个GPC、64个TPC以及128个SM单元,第三代RT Cores为128个,第四代Tensor Cores为512个。
其实根据完整的架构图就能看出,此次Ada架构整体结构性的改动并不大,这一点从SM单元便能清晰印证,同样的FP32 CUDA核心,同样的FP32/INT32混合CUDA核心,同样的L1级缓存等等。当然,每个SM单元内部的Tensor Core升级为第四代。
不过变化最为显著的,则是第三代光追核心,我们结合两代架构来看。在第二代光追核心中,包含负责边界交叉测试的Box Intersection Engine引擎,和负责三角形交叉测试的Triangle Intersection Engine引擎。
而在第三代光追核心中,还增加了两个新的引擎:Opacity Micro-Map Engines(OMM)和Displaced Micro-Mesh Engines(DMM),这两个新的硬件单元可以极大地提升光追性能(具体原理后文详细介绍)。
至此,每2个SM单元组成一个TPC单元,每6组TPC单元组成一个完整的GPC顶层单元(在部分核心中,会出现5组TPC组成一个GPC单元的情况)。
而每个GPC单元又搭载一个独立的光栅引擎、两组ROP分区(每组包含8个ROP单元)。
过多关于数数的部分就不再介绍了,毕竟此次架构图的大面上与NVIDIA Ampere架构基本相同,下面我们分别来看看,除了性能Ada架构还有哪些升级。
Shader Execution Reordering (SER)着色器执行重排序
SER主要的作用是提升着色器性能,它可以将效率低下的工作负载,动态重组为更高效的工作负载。主要针对光线追踪的性能提升非常大。
简单地说,GPU在执行类似工作的时候效率最高。但随着光追效果越来越强大,每个场景可能有数百万条光线照射在不同材质上,而我们知道不同材质的反射率,以及反射效果也是不同的。所以这样就为着色器创建了大量的、发散的,效率低下的工作负载。
SER则可以将这些杂乱的指令重新分门别类,动态重组为更高效的工作负载。根据NVIDIA的说法,SER可将着色器性能最多提升2倍,并将游戏帧率最高提升25%。
举个简单的例子,当光线第一次从发射端到碰撞端是非常有规律的射线,而碰撞到物体后的二次光追,则会出现大量发散的、无规律的反射,这对于光追负载是非常高的。而从图中便能看到,SER可以将这些指令进行二次排序,以发挥出着色器的最大性能。
不过好在这么实用的功能并不是RTX 40系的专利,它是一个易于集成的SDK,目前需要游戏开发商集成在游戏中。另外由于它是一个通用的逻辑,后续也有可能直接集成在Windows的API中,这样游戏开发者就无需特意引用,直接调用系统API即可。
可以说SER对于手持RTX 20系及以上(能够开启光线追踪)的N卡用户来说,是极大地福音。毕竟免费提升的光追性能,谁不喜欢呢。
第三代 RT Cores
RT Core的作用在于更快的光线追踪计算能力,如果说在RTX 30系显卡中,想要畅享4K高帧率游戏有点吃力,那么RTX 40系显卡中,将显得轻而易举。
在GeForce RTX 4090这张显卡上,达到了191 RT-TFLOPs的处理能力,而RTX 30系显卡最快处理能力为78 RT-TFLOPs,足足为2.4倍。并且根据NVIDIA的官方说法,第三代RT Core的峰值RT-TFLOPs相比于前代提高了2.8倍。而这只能说明,这张4090并非Ada Lovelace架构的最终形态。
Opacity Micro-Map Engines
在第三代RT Cores中引入了两个重要的硬件单元,首先是Opacity Micro-Map Engines,可以理解为微映射透明度引擎,它主要的作用是优化光线追踪渲染,可大幅减轻着色器的工作负担。
比如树叶之类的复杂物体,不同的光线都会影响它的表现状态,以及树叶之间的光线反弹,所以对于光线追踪的计算量是巨大的。
不过Opacity Micro-Map Engines可以将光线追踪特性烘焙到不透明蒙版中,所以那些不规则形状和半透明的对象,也就能够更快更精准的渲染出来,从而极大减轻着色器的工作负担。
Displaced Micro-Mesh Engines(DMM)
Displaced Micro-Mesh Engines可理解为微 格置换引擎,它构建光线追踪的BVH(Bounding volume hierarchy)的速度提高了10倍!所使用的的显存减少了20倍!
DMM由第三代RT core本地处理,与前几代相比,它只使用基本三角形渲染复杂几何图形,极大减少了存储和处理需求。
具体的工作原理从图中一目了然,新的DMM可以将面数非常多的复杂图形做简化,创造出简单的模型,但整体的光线追踪效果不变。
通过一些模型数据我们可以具体看到,新的DMM将模型简化了多少。原本1100万三角面的模型,经过简化后,只有15万左右的微 格,BVH的构建速度提升了8.5倍,小了6.5倍。
而这还不是最夸张的,越复杂的模型往往优化的效果越好,在官方展示的这几组对比示例中,最快可提升大于15倍的速度,容量简化20倍的模型。
第四代 Tensor Cores
除了光追单元的升级外,第四代张量核心的升级更加恐怖。它采用了新的FP8张量引擎,在GeForce RTX 4090这张显卡上,吞吐量达到了1.32 Tensor petaFLOPs,提高了5倍。
注意这里的单位——petaFLOPs。以往的TFLOPs为万亿次浮点运算,而petaFLOPs则为千万亿次浮点运算。
DLSS 3
本次推出的DLSS 3也是RTX 40系一大卖点,从DLSS 2.3直接迈入了3.0版本,也能看出此次的升级之大。而DLSS 3也被NVIDIA官方称为神经 络渲染新时代。
全新的DLSS 3在原有的DLSS超分辨率的基础上,添加了光学多帧生成技术,以生成全新的帧,而不像原来只能生成像素。
DLSS 3结合了DLSS超分辨率、DLSS帧生成和NVIDIA Reflex这三大技术,能够重建八分之七的像素,极大提高性能。
在GPU受限的游戏中,比如2K分辨率及以上的更高分辨率,DLSS 2能够将帧率提高2倍,DLSS 3则能够提升4倍。
本次DLSS 3跨越了一个大版本,从想法和原理上也再度升级,完全“猜想”1帧的技术,我们解释起来简单,但实施起来需要大量的推理与演算,以及绝对超前的想法。
不过“凭空”生成的1帧,在延迟上绝对要比DLSS 2高。所以此次完整的DLSS 3中,捆绑了NVIDIA Reflex,可以有效帮助减小延迟。
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!