Mobile-LPR 是一个面向移动端的准商业级车牌识别库,以NCNN作为推理后端,使用DNN作为算法核心,支持多种车牌检测算法,支持车牌识别和车牌颜色识别。
特点
算法流程
构建及安装
- 下载源码
git clone https://github.com/xiangweizeng/mobile-lpr.git
- 准备环境
- 编译安装
mkdir buildcd buildcmake ..make install
使用及样例
1.使用MTCNN检测
void test_mtcnn_plate(){ pr::fix_mtcnn_detector("../../models/float", pr::mtcnn_float_detector); pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_float_detector); pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer); pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer(); Mat img = imread("../../image/plate.png"); ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows); std::vector<pr::PlateInfo> objects; detector->plate_detect(sample, objects); lpr->decode_plate_infos(objects); for (auto pi : objects) { cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << "," << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl; }}
2.使用LFFD检测
void test_lffd_plate(){ pr::fix_lffd_detector("../../models/float", pr::lffd_float_detector); pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::lffd_float_detector); pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer); pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer(); Mat img = imread("../../image/plate.png"); ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows); std::vector<pr::PlateInfo> objects; detector->plate_detect(sample, objects); lpr->decode_plate_infos(objects); for (auto pi : objects) { cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << "," << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl; }}
3.使用SSD检测
void test_ssd_plate(){ pr::fix_ssd_detector("../../models/float", pr::ssd_float_detector); pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::ssd_float_detector); pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer); pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer(); Mat img = imread("../../image/manys.jpeg"); ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows); std::vector<pr::PlateInfo> objects; detector->plate_detect(sample, objects); lpr->decode_plate_infos(objects); for (auto pi : objects) { cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << "," << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl; }}
4.使用量化模型
void test_quantize_mtcnn_plate(){ pr::fix_mtcnn_detector("../../models/quantize", pr::mtcnn_int8_detector); pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_int8_detector); pr::fix_lpr_recognizer("../../models/quantize", pr::int8_lpr_recognizer); pr::LPRRecognizer lpr = pr::int8_lpr_recognizer.create_recognizer(); Mat img = imread("../../image/plate.png"); ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows); std::vector<pr::PlateInfo> objects; detector->plate_detect(sample, objects); lpr->decode_plate_infos(objects); for (auto pi : objects) { cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << "," << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl; }}
后续工作
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!