一个面向移动端的准商业级车牌识别库

Mobile-LPR 是一个面向移动端的准商业级车牌识别库,以NCNN作为推理后端,使用DNN作为算法核心,支持多种车牌检测算法,支持车牌识别和车牌颜色识别。

特点

  • 超轻量,核心库只依赖NCNN,并且对模型量化进行支持
  • 多检测,支持SSD,MTCNN,LFFD等目标检测算法
  • 精度高,LFFD目标检测在CCPD检测AP达到98.9,车牌识别达到99.95%, 综合识别率超过99%
  • 易使用,只需要10行代码即可完成车牌识别
  • 易扩展,可快速扩展各类检测算法
  • 算法流程

    构建及安装

    1. 下载源码
    git clone https://github.com/xiangweizeng/mobile-lpr.git
    1. 准备环境
  • 安装opencv4.0及以上, freetype库
  • 安装cmake3.0以上版本,支持c++11的c++编译器,如gcc-6.3
    1. 编译安装
    mkdir buildcd buildcmake ..make install

    使用及样例

    1.使用MTCNN检测

  • 代码样例
  • void test_mtcnn_plate(){    pr::fix_mtcnn_detector("../../models/float", pr::mtcnn_float_detector);    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_float_detector);    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();    Mat img = imread("../../image/plate.png");    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);    std::vector<pr::PlateInfo> objects;    detector->plate_detect(sample, objects);    lpr->decode_plate_infos(objects);    for (auto pi : objects)    {        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","        << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;    }}
  • 效果示例:
  • 2.使用LFFD检测

  • 代码样例
  • void test_lffd_plate(){    pr::fix_lffd_detector("../../models/float", pr::lffd_float_detector);    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::lffd_float_detector);    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();    Mat img = imread("../../image/plate.png");    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);    std::vector<pr::PlateInfo> objects;    detector->plate_detect(sample, objects);    lpr->decode_plate_infos(objects);    for (auto pi : objects)    {        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;    }}
  • 效果示例:
  • 3.使用SSD检测

  • 代码样例
  • void test_ssd_plate(){    pr::fix_ssd_detector("../../models/float", pr::ssd_float_detector);    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::ssd_float_detector);    pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);    pr::LPRRecognizer lpr =  pr::float_lpr_recognizer.create_recognizer();    Mat img = imread("../../image/manys.jpeg");    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);    std::vector<pr::PlateInfo> objects;    detector->plate_detect(sample, objects);    lpr->decode_plate_infos(objects);    for (auto pi : objects)    {        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;    }}
  • 效果示例:
  • 4.使用量化模型

  • 代码样例
  • void test_quantize_mtcnn_plate(){    pr::fix_mtcnn_detector("../../models/quantize", pr::mtcnn_int8_detector);    pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_int8_detector);    pr::fix_lpr_recognizer("../../models/quantize", pr::int8_lpr_recognizer);    pr::LPRRecognizer lpr =  pr::int8_lpr_recognizer.create_recognizer();    Mat img = imread("../../image/plate.png");    ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);    std::vector<pr::PlateInfo> objects;    detector->plate_detect(sample, objects);    lpr->decode_plate_infos(objects);    for (auto pi : objects)    {        cout << "plate_no: " << pi.plate_color << pi.plate_no << " box:" << pi.bbox.xmin << ","             << pi.bbox.ymin << "," << pi.bbox.xmax << "," << pi.bbox.ymax << "," << pi.bbox.score << endl;    }}
  • 效果示例:
  • 后续工作

  • 添加更优的算法支持
  • 优化模型,支持更多的车牌类型,目前支持普通车牌识别,欢迎各位大神提供更好的模型
  • 优化模型,更高的精度
  • 添加Android 使用实例
  • 性能评估
  • 声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

    上一篇 2020年2月18日
    下一篇 2020年2月18日

    相关推荐