写软件和造楼房一样需要设计,但是和建筑行业严谨客观的设计规范不同,软件设计常常很主观,且容易引发争论。
引言
设计模式的缺陷
“过度设计” 这个词也不是空穴来风,首先,互联 软件的迭代比传统软件快很多,传统软件,比如银行系统,可能一年只有两个迭代,而 站的后台可能每周都在发布更新,所以互联 非常注重软件修改的便捷性。其次,设计模式的 “分模块”,“开闭原则” 等主张,天然地易于拓展而不利于修改,和互联 软件频繁迭代产生了一定的冲突。
开闭原则的缺陷
开闭原则:软件中对象应该对扩展开放,对修改关闭。
基于开闭原则,诞生了很多中台系统。应用通过插件的方式,可以在满足自身定制业务需求的同时,复用中台的能力。
当业务需求满足中台的主体流程和规范时,一切看上去都很顺利。一旦需求发生变更,不再符合中台的规范了,往往需要中台进行伤筋动骨的改造,之前看到一篇文章吐嘈 “本来业务上一周就能搞定的需求,提给中台需要8个月”。
所以基于中台无法进行深度的创新,深度创新在软件上必然也会有深度的修改,而中台所满足的开闭原则是不利于修改的。
最小知识原则的缺陷
最小知识原则:一个对象对于其他对象的了解越少越好。
最小知识原则又称为 “迪米特法则”,基于迪米特法则,我们会把软件设计成一个个 “模块”,然后对每个 “模块” 只传递需要的参数。
在过程式编码中,代码片段是拥有上下文的全部信息的,比如下面的薪资计算代码:
// 绩效int performance = 4;// 职级int level = 2;String job = "engineer";switch (job) { case "engineer": // 虽然计算薪资时只使用了 绩效 作为参数, 但是从上下文中都是很容易获取的 return 100 + 200 * performance; case "pm": // .... 其余代码省略}
而如果我们将代码改造成策略模式,为了满足迪米特法则,我们只传递需要的参数:
// 绩效int performance = 4;// 职级int level = 2;String job = "engineer";// 只传递了需要 performance 参数Context context = new Context();context.setPerformance(performance);strategyMap.get(job).eval(context);
需求一旦变成 “根据绩效和职级计算薪资”,过程式代码只需要直接取用上下文的参数,而策略模式中需要分三步,首先在 Context 中增加该参数,然后在策略入口处设置参数,最后才能在业务代码中使用增加的参数。
这个例子尚且比较简单,互联 的快速迭代会让现实情况更加复杂化,比如多个串联在一起模块,每个模块都需要增加参数,修改成本成倍增加。
可理解性的缺陷
设计模式一般都会应用比较高级的语言特性:
这些大大增加了设计模式代码的理解成本。而过程式编码只需要会基本语法就可以写了,不需要理解这么多高级特性。
小结
这三点缺陷造成了设计模式和互联 快速迭代之间的冲突,这也是应用设计模式时难以避免的成本。过程式编码相比设计模式,虽然有着简单,易于修改的优点,但是却有永远无法回避的本质缺陷。
过程式编码的本质缺陷
上文中分析,过程式编码的优点就是 “简单,好理解,易于修改”。这些有点乍看之下挺对的,但是仔细想想都很值得怀疑:
软件复杂度
软件工程著作 《人月神话》 中认为软件复杂度包括本质复杂度和偶然复杂度。
本质复杂度是指业务本身的复杂度,而偶然复杂度一般是因为方法不对或者技术原因引入的复杂度,比如拆分服务导致的分布式事务问题,就是偶然复杂度。
如果一段业务逻辑本来就很复杂,即本质复杂度很高,相关模块的代码必然是复杂难以理解的,无论是采用设计模式还是过程式编码。“用过程式编码就会更简单” 的想法在这种情况下显然是荒谬的,相反,根据经验,很多一直在采用过程式编码的复杂模块,最后都会变得逻辑混乱,缺乏测试用例,想重构时已经积重难返。
那么设计模式会增加偶然复杂度吗?阅读有设计模式的代码,除了要理解业务外,还要理解设计模式,看起来是增加了偶然复杂度,但是下文中我们会讨论,从长期的角度来看,这不完全正确。
理解单一问题 vs 理解一类问题
开头提到,设计模式是软件设计的“规范”,和建筑业的设计规范类似,规范能够帮助不同背景的人们理解工程师的设计,比如,当工人们看到三角形的结构时,就知道这是建筑师设计的支撑框架。
过程式代码一般都是针对当前问题的某个特殊解决方法,不包含任何的 “模式”,虽然表面上减少了 “模式”的学习成本,但是每个维护者/调用者都要去理解一遍这段代码的特殊写法,特殊调用方式,无形中反而增加了成本。
以数据结构的遍历为例,如果全部采用过程式编码,比如二叉树打印的代码是:
public void printTree(TreeNode root) { if (root != null) { System.out.println(root.getVal()); preOrderTraverse1(root.getLeft()); preOrderTraverse1(root.getRight); }}
图的节点计数代码是:
public int countNode(GraphNode root) { int sum = 0; Queue<Node> queue = new LinkedList<>(); queue.offer(root); root.setMarked(true); while(!queue.isEmpty()){ Node o = queue.poll(); sum++; List<Node> list = g.getAdj(o); for (Node n : list) { if (!n.isMarked()) { queue.add(n); n.setMarked(true); } } } return sum;}
这些代码本质上都是在做数据结构的遍历,但是每次读到这样的代码片段时,你都要将它读到底才发现它其实就是一个遍历逻辑。幸好这里的业务逻辑还比较简单,就是一个打印或者计数,在实际工作中往往和更复杂的业务逻辑耦合在一起,更难发现其中的遍历逻辑。
而如果我们使用迭代器模式,二叉树的打印代码就变成:
public void printTree(TreeNode root) { Iterator<TreeNode> iterator = root.iterator(); while (iterator.hasNext()) { TreeNode node = iterator.next(); System.out.println(node); }}
图的节点计数代码变成:
public int countNode(GraphNode root) { int sum = 0; Iterator<TreeNode> iterator = root.iterator(); while (iterator.hasNext()) { iterator.next(); sum++; } return sum;}
这两段代码虽然有区别,但是它们满足一样的 ”模式“,即 “迭代器模式”,看到 Iterator 我们就知道是在进行遍历,甚至都不需要关心不同数据结构具体实现上的区别,这是所有遍历统一的解决方案。虽然在第一次阅读这个模式的代码时需要付出点成本学习 Iterator,但是之后类似代码的理解成本却会大幅度降低。
设计模式中类似上面的例子还有很多:
是面对具体问题 case by case 的学习,还是掌握一个通用原理理解一类问题?肯定是学习后者更有效率。
“过程式代码更加好理解”往往只是针对某个代码片段的,当我们将范围扩大到一个模块,甚至整个系统时,其中会包含大量的代码片段,如果这些代码片段全部是无模式的过程代码,理解成本会成倍增加,相似的模式则能大大降低理解成本,越大的代码库从中的收益也就越大。
新人学习过程式编码和设计模式的学习曲线如下图:
过程式编码虽然刚开始时没有任何学习压力,但是不会有任何积累。设计模式虽然刚开始时很难懂,但是随着学习和应用,理解会越来越深刻。
点击查看原文,获取更多福利!
https://developer.aliyun.com/article/1092076?utm_content=g_1000365272
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!