深度解读 ADAS/AD域控制器及芯片平台

ADAS/AD概述

智能化是实现汽车作为人们第三生活空间这一目标的重要技术路径,当前汽车智能化主要有两大发展方向:驾驶自动化和座舱智能化。自动驾驶(ADAS/AD)的使命是将人的脚(纵向控制)、手(横向控制)、眼(感知)和脑(决策)等从驾驶任务中解放出来。人的精力被释放出来后,进一步促进了人在汽车内办公、休闲和娱乐的需求,这些需求推动了汽车座舱的数字化、信息化以及新兴的人机交互模式等技术的蓬勃发展,这也就是“智能座舱(Intelligent Cockpit)”技术。

目前自动驾驶技术在全球范围内已经进入快速发展期。随着搭载L1/L2级别ADAS功能的汽车进入大规模量产,L1/L2级别ADAS功能的市场渗透率将快速提升。而L3/L4级别自动驾驶系统仍处于小规模原型测试阶段。当今的自动驾驶行业,中国市场绝对是主力。今年中国L2的搭载量预计突破80万,中国品牌占据绝大部分份额。

ADAS功能市场渗透率的快速提升来自几个方面的驱动力:

1. ADAS相关的软硬件技术越来越成熟和稳定,成本也越来越低。比如:毫米波雷达跟五年前相比下降了超过50%。

2. 一些基本的ADAS功能(比如:自动紧急刹车AEB)被纳入到了各国的汽车评测体系(比如:C-NCAP)中,这在客观上极大的推动了这些ADAS功能的普及。

3. 中低端车竞争加剧,ADAS功能可以有效地提升品牌的科技感和驾车体验,造成主流合资品牌和自主品牌的重点车型甚至超过了一些国际上的高端品牌。

未来中国市场ADAS功能的渗透率还将持续快速提高,中低端汽车所配置的ADAS功能将逐步增多。根据艾瑞咨询研究 告显示,预计2025年ADAS功能在乘用车市场可以达到65%左右的渗透率。L3级别的高速自动领航HWP功能和L4级别的AVP自动泊车功能,目前车型渗透率较低,未来提升空间较大。

图3-1 ADAS功能市场渗透率预测

1.1 ADAS/AD功能汇总

目前行业内的ADAS系统实现了很多辅助驾驶的功能,总体上这些功能按照用途可以分为这么几类:主动安全功能、舒适性辅助驾驶功能、泊车辅助功能和监督/无监督自动驾驶功能等。

通常,L0-L2级自动驾驶,习惯用ADAS表征;L2+级自动驾驶,用ADAS/AD表征,以示过渡;L3-L4级自动驾驶,用AD表征。

1.2 ADAS/AD系统架构

智能驾驶系统本质上就是要解决三个问题:1)我在哪?2)我去哪?3)我该如何去?基于这样一个系统模型,典型的智能驾驶系统或者自动驾驶系统通常由三部分组成:

1. 环境感知:感知系统依靠各种传感器(包括:摄像头、毫米波雷达、超声波雷达、激光雷达、高精地图/IMU/GPS等)来获取汽车所处环境信息和周边车辆、行人、交通信 灯和路标等信息,为汽车的综合决策提供数据支撑,解决“我在哪”的核心问题。

2. 决策规划:通过环境感知的结果进行数据融合,结合高精地图数据确定合适的工作模型,决定相应的轨迹规划方案,以达到替代人类作出驾驶决策的目的,将智能汽车以拟人化的方式融入整个交通流当中,解决“我去哪”的核心问题。

3. 控制执行:也就是对一个具体的最小决策规划结果的实际执行,从而达到规划的目的。具体在车上,通常体现为通过各种控制理论和算法来控制车辆的驱动、制动和转向系统,从而实现车辆的横向及纵向控制,使汽车精准地按照决策规划实现有效的避让、减速、车距保持、转向等动作,解决“我该如何去”的核心问题。

图3-2 典型自动驾驶系统的系统模型

2.

ADAS/AD感知系统

自动驾驶的感知系统其实包括:环境感知、车辆自身状态感知以及车辆定位等几大模块。传感器是车辆感知系统收集环境信息、车辆自身状态信息和位置信息等的重要手段。自动驾驶车辆所配备的传感器可以分为三类:

  1. 车辆自身状态感知传感器(简称:自感知传感器):自感知使用本体感应传感器来测量车辆的当前状态,包括:车辆的速度、加速度、横摆和转向角等。本体感应西西里通常使用预先安装的测量单元来获取信息,比如:里程表、惯性测量单元(IMU)、陀螺仪(Gyroscopes)和来自控制器局域 (CAN)总线的信息。
  2. 定位传感器(Localization):定位传感器使用GPS等外部传感器(Exteroceptive Sensor)或惯性测量单元读数的航位推算进行定位,可以确定车辆的全球和本地位置。车辆高精度定位通常会基于多个传感器信息的组合来进行,比如:GPS、IMU、里程表和摄像头等。对多个传感器的数据融合可以最大限度减少单个传感器的局限性和缺点,提高定位的精度和可靠性。
  3. 环境感知传感器(Surrounding-sensing):环境感知传感器主要有摄像头、超声波雷达、毫米波雷达和激光雷达等四种。

环境感知系统依靠这些环境感知传感器来采集车辆所处环境信息数据,并对其进行一些列的计算和处理,从而对周围环境进行精确建模,其输出结果是一个环境模型。所谓环境模型是指车辆外部物理世界的数字表示,它包括道路、要避开的物体(比如:其它车辆、易受伤害的道路使用者等)以及可驾驶的“自由空间(Freespace)“的表示。

不同传感器特点各异

不同的传感器由于其工作原理不同,因此具有不同的特性。主机厂为了保证ADAS感知系统的冗余和鲁棒性,通常会采取多种传感器融合的配置方案。下表总结了ADAS系统中常见的各类传感器的特点:

2.1 ADAS系统传感器布局方案

主流的ADAS系统从L0级别发展到目前的L2+级别,技术方案已经发生了巨大的变化,从早起的分布式智能传感器方案演变到现在基于ADAS域控制器的ADAS域集中式方案。相应的传感器布局也有了很大的变化。

下面是常见的一些ADAS传感器布局中的术语简称:

  • FCM:Front Camera Module,前视摄像头总成,有单目(Mono)、双目(Stereo)、双焦(Bi-Focals)和三焦(Tri-Focals)4种形态。
  • FCR:Front Central Radar,前雷达模块,有MRR (中距,Mid-Range Radar) 和 LRR (长距,Long-Range Radar) 2种形态。一般1R1V方案(后续会详细解释该方案)中常选择MRR作为前雷达模块,5R1V方案中,常选择LRR作为前雷达。
  • SRRs:Side-Rear Radars,侧后雷达模块(左、右,一般左master右slave),有SRR (短距Short-Range Radar) 和MRR (中距Mid-Range Radar) 2种形态;SRR常为24G毫米波,MRR常为77-79G毫米波。这里SRR缩写就有两个含义,可能是指侧后雷达模块,也可能是指短距离毫米波雷达,因此加s区分侧后雷达模块(SRRs)。
  • USS:Ultra Sonic Sensor,超声波雷达传感器。
  • 早期的L0-L2级别的ADAS系统是由几个互相独立的子系统组成的,每个子系统实现相应独立的ADAS功能,因此也称为分布式的ADAS系统方案。

    图3-3 早期的L0-L2级别的ADAS系统实现方案

  • 前向ADAS系统:一般由单FCR,或者单FCM组成;当前主流配置是FCR+FCM组成的1R1V方案,能够支持到TJA/ICA的L2 ADAS(单车道驾驶辅助)。后续伴随视觉检测能力的提高,在L0-L2级ADAS/AD定位的车型上,有向单FCM发展趋势,因为车道线等横向控制所需感知信息,只有视觉能提供;省掉雷达能降低系统成本。
  • 侧后ADAS系统。一般由侧后方两个SRRs组成,实现大部分侧后向ADAS功能。
  • 自动泊车系统。即泊车控制器+12颗超声波传感器(USS)组成的APA(自动泊车辅助)系统;实现功能主要是APA和FAPA等。
  • 全景环视系统。即由全景环视控制器(实际现在该控制器目前已很少见,该零部件实体已经被吸收合并到其他控制器节点上了;主要由车机、泊车控制器或者域控制器所取代)+ 四个鱼眼摄像头组成。实现AVM功能(Around View Monitoring,环视监控)。
  • 其中,前两个系统常称之为行车ADAS系统(Driving ADAS System),有时候这种行车ADAS方案也常被称作3R1V方案,3 Radar 1 Vision方案;后两个常称之为泊车ADAS系统(Parking ADAS System)。

    到L2+级别的ADAS系统,集成度更高、性能更强大的ADAS域控制器整合了原来分散的ADAS子系统,原本分散系统所独占的传感器数据可以被多个ADAS功能所复用。

    L2+级别的ADAS系统主要有两大类:1)多雷达域集中式方案,主要是5雷达方案,常见的有5R1V、5R2V、5R5V等方案;2)多视觉的域集中式方案,是指基于多雷达方案的继续演进,形成多视觉感知+雷达冗余感知的系统,比如5R12V方案。

    下图是L2+级别ADAS/AD系统最大化的传感器架构方案——5R-12V-12USS方案。这个传感器布局架构的上限就是“坚决不上激光雷达”。只要上了激光雷达(一般是前向激光雷达),就到了L3级AD系统的传感器架构;

    图3-4 L2+级别ADAS系统的终极传感器布局架构

  • 前视主摄像头(Main Camera, x1):主摄像头在L0-L2阶段对应FCM总成,即单目前视方案;在L2+域控方案中,作为dummy Camera,采用LVDS与域控制器连接。常见的HFOV(水平视场角,Horizontal Field Of View)主要有30° – 50° – 60° – 100° – 120°等核心设计值,一般较为圆整化。实际工程实现值,会根据具体光学镜头的不同,有48°/52°(设计值50°)、28°(设计值30°)等规格。摄像头色彩矩阵(Patten)通常为RCCB或RCCC,有向RYYCy发展的趋势。RYYCy没有Clear,色彩信息未丢失,可以保证色彩还原性能。检测距离150-170米。
  • 前视窄角摄像头(Narrow Camera, x1):30°左右的前视摄像头,用来观察红绿灯/车辆/行人等关键目标。一般与前视主摄像头会采用相同的图像传感器(比如同为1.3MP,或同为2MP,甚至同为8MP的Image sensor),缩小FOV后,像素密度变大,检测距离相对Main Camera更远;Patten常为RCCB或RCCC。检测距离250米。
  • 前视广角摄像头(Wide Camera, x1):HFOV约140°,类似特斯拉的三焦视摄像头中的广角摄像头。在上了8MP摄像头后,Main Camera的FOV都能达到120°了,Wide Camera可能就不需要了。
  • 侧前(左右两颗)摄像头(Corner Camera, x2):HFOV约70°-80°,后续会升级到约100°;类似特斯拉的B柱摄像头,向侧前方看,主要关注近距离车辆cut-in和自车变道需求。Patten常为RCCB或RCCC。
  • 侧后(左右两颗)摄像头(Wing Camera,x2):HFOV约80°-90°,后续可能会统一到100°。Patten常为RCCB或RCCC;关注侧边和侧后方目标,满足变道需求。
  • 后视摄像头(Rear Camera):同前向Main Camera,用于后方目标检测。
  • 以上这些摄像头,也常称为Driving Cameras(行车摄像头,多用于行车功能)。

  • 前向鱼眼摄像头(Front Fisheye Camera):鱼眼环视摄像头之一,用于全景环视功能的Display(给人看的,显示功能,HMI),以及融合泊车功能的视觉Detection(给“车”看的,视觉感知,目标检测);常用色彩矩阵为RGGB,因为有色彩还原需求。若使用8MP摄像头,并使用像素合并技术降低到2MP使用,则可以选择RYYCy。
  • 左侧鱼眼摄像头(Left Fisheye Camera):同上。
  • 右侧鱼眼摄像头(Right Fisheye Camera):同上。
  • 后向鱼眼摄像头(Rear Fisheye Camera):同上。
  • 以上这四颗鱼眼摄像头,也常称为Parking Cameras(泊车摄像头,多用于泊车功能);当然L2+阶段各个传感器不断融合,目前Driving Camera和Parking Camera的界限已经渐渐模糊了。泊车功能也常用前视摄像头做记忆泊车(MPA,Memory Park Assist);行车功能也常用侧边鱼眼摄像头检测车道线做safety stop。

    除以上视觉传感器,还有很多主动型传感器:

  • 前向毫米波雷达(Front Central Radar):一般为LRR(Long-Range Radar),负责前方目标检测,具备良好的测距测速性能,也不容易被遮挡;
  • 侧前角雷达(Side-Front Radar, SFR x2)和侧后角雷达(Side-Rear Radar, SRR x2): 车辆四角,一般由SRR(Short-Range Radar)或MRR(Middle-Range Radar)充当。可以提供双模检测模式,Long Range Mode和Short Range Mode;长距离模式FOV小,检测距离远;短距离模式FOV大,检测距离近。在域控制器方案中,雷达不分Master和Slave。在分布式方案中,一般左侧雷达为Master,右侧雷达为Slave。
  • 超声波传感器(Ultra Sonic Sensor, USS):12颗,侧边4个长距离,前后8个短距的。
  • 3.

    ADAS/AD域控芯片及方案

    (一) L0-L2级别的ADAS方案

    正如前所述,早期大多数L0-L2级别的ADAS系统都是基于分布式控制器架构,整个ADAS系统由4-5个ADAS子系统组成,每个子系统通常是个一体机整体方案(可以被看作是一个smart sensor),子系统独占所配置的传感器,通常相互之间是独立的。

    以智能前视摄像头模块(Intelligent Front Camera Module,FCM)为例,整个子系统ECU主板上包含2颗芯片:一颗是安全核(Safety Core);另一个颗是性能核(Performance Core)。安全核一般由英飞凌TC297/397之类的MCU充当,承载控制任务,因此需要较高的功能安全等级需求;性能核通常是具有更高性能算力的多核异构MPU,会承载大量的计算任务。

    下面是一个对L0-L2级别方案的总结:

  • L0级别方案:实现各种ADAS 警功能,比如:FCW、LDW、BSW、LCA等。分布式架构,通常由FCM、FCR、SRRs、AVS、APA等几大硬件模块组成。
  • L1级别方案:完成各种ADAS单纵向核单横向控制功能,比如:ACC、AEB、LKA等。也是分布式架构,硬件模块组成与L0级别方案大致相同。
  • L2级别方案:完成ADAS纵向+横向组合控制功能。比如:基于FCM+FCR融合系统,融合前向视觉感知和前雷达目标感知信息,实现TJA/ICA等功能;或者基于AVS+APA的融合系统,实现自动泊车功能。
  • (二)L2+以上级别的ADAS方案

    分布式架构的ADAS系统存在两个致命缺点:1)各个子系统互相独立,无法做多传感器之间的深度融合。2)各子系统独占所配置的传感器,因此无法实现跨多个不同子系统传感器的复杂功能。

    当整车EE架构演进到域集中式EEA之后,ADAS域控制器中配置了集成度更高、算力性能更高的计算处理器平台,进而可以支撑更复杂的传感器数据融合算法,以实现更高级级别的ADAS功能,比如:HWP、AVP等。

    集中式ADAS域控制器方案从最早的四芯片方案,过渡到三芯片方案,再到当前业界主流的两芯片方案,如下图3-5所示:

    图3-5 ADAS域控制器方案演进历史

    下图3-6是一个典型的车载ADAS域功能结构示意图,无论硬件方案如何变化,各方案所需实现的功能结构都是类似的。

    图3-6 典型的车载ADAS域功能结构示意图

    3.1 Mobileye EyeQ系列芯片方案

    Mobileye成立于1999年,是以色列提供基于视觉算法分析和数据处理来提供ADAS/AD解决方案的全球领先者。其EyeQ系列芯片产品截止2021年底已经总计出货接近一亿片。尽管在L3/L4领域被英伟达和高通压制,但是在主流的L2级别ADAS市场,仍然是霸主,其市场占有率高达75%。2021年出货量高达2810万片。

    Mobileye一直采用“传感器+芯片+算法”绑定的软硬件一体化的ADAS解决方案模式。这种“黑盒”商业模式的优点是开发周期短,客户可以快速出产品,比较受转型较晚或者软件/算法能力较弱的传统主机厂或者Tier 1厂商欢迎。但是缺点是导致客户开发灵活度下降,不能满足客户差异化定制产品的需求。越来越多的主机厂希望采用更开放的平台,把“芯片和算法剥离开,采用可编程的芯片,从而通过OTA来实现持续的算法迭代升级”。这也是软件定义汽车的思路。

    下面是其EyeQ4/5/6三代产品的基本情况:

    (一)EyeQ4芯片平台

    EyeQ4新品配置了4个MIPS CPU核、6个矢量微码处理器(VMP)以及两个可编程宏阵列(PMA)。每个CPU核拥有4个硬件线程。总计2.5TOPS的算力,可以实现以每秒36帧的处理速度处理8路摄像头的视频信息。总体性能相比EyeQ3提升8倍之多,此外,EyeQ4还引入“路 采集管理(REM)”系统,它利用纵包数据的方法将路标、车道线等进行压缩,最终聚合成路书,从而为自动驾驶汽车提供更精确的定位。

    下图是EyeQ4新品的功能模块图。

    图3-7 EyeQ4芯片功能模块图

    (二)EyeQ5芯片平台

    EyeQ5主要有4个模块:CPU核、计算机视觉处理器(CVP)、深度学习加速器(DLA)和多线程加速器(Multithreaded Accelerator,MA)。其中,CPU和CVP是大头。

    EyeQ5选择了Imagination的MIPS I6500作为CPU内核,每个MIPS I6500内核都拥有2个硬件线程。总共配置8个CPU内核,可提供高达52000 DMIPS算力。

    EyeQ5总共配置18个CVP内核。CVP是Mobileye针对很多传统计算机视觉算法设计的新一代视觉处理器。Mobileye从公司成立时起就以自己的CV算法而闻名,也因为用专用的ASIC来运行这些CV算法而达到极低的功耗而闻名。

    EyeQ5采用了7nm的制程工艺,总计可提供高达24TOPS的算力,并且只有10W左右的TDP功耗,因此有着极为出色的能效比。EyeQ5最多支持20个外部传感器,包括:摄像头、雷达或者激光雷达等。出色的计算性能使得我们在EyeQ5上进行深度的传感器融合,以实现更复杂的L2+/L3级别ADAS功能。

    下图是EyeQ5的芯片功能模块图:

    图3-8 EyeQ5 Block Diagram

    (三)EyeQ6芯片平台

    EyeQ6H与Mobileye之前的芯片最大的不同就是加入了两个小算力规模的GPU,一个是ARM Mali GPU,算力为64GFLOPS,预计用于ADAS的AR图像叠加输出。另一个是Imagination的BXS 1024 MC-2,算力为1000GFLOPS,预计用于OpenCL加速引擎。

    CPU仍然是EyeQ5的MIPS I6500-F架构,不同之处在每个CPU内核的线程数从2个增加到4个,总共是8核32线程。

    EyeQ6H可以用比EyeQ5多25%的功耗,提供比3倍于EyeQ5的算力性能。

    图3-9 EyeQ6 ADAS域控处理器

    Mobileye芯片平台最大优点是产品成本低,开发周期很短,开发费用极低,绝大部分功能都经过验证,没有风险。而缺点是系统非常封闭,难以搞特色功能,迭代困难,出了问题,较难改进或提升。对于传统车厂而言,Mobileye基本是唯一选择,对于总想与众不同的新兴造车厂家来说就有点无法适应。然而新兴造车企业毕竟还是极少数。Mobileye霸主地位至少五年内稳如泰山。

    3.2 TI Jacinto 7芯片平台

    2020年初的CES大会上,TI发布了其最新的Jacinto 7架构的系列车载芯片。上一代的Jacinto 6架构主要聚焦在车载Infotainment(信息娱乐)的功能,例如更炫的UI(用户界面)、更多的显示屏等。随着新一代Jacinto 7架构芯片的发布,可以看出TI已经基本放弃智能座舱和IVI市场,而重点转向ADAS域控和汽车 关域方向。

    Jacinto 7系列芯片包含两颗车规级芯片:(1)用于高级辅助驾驶(ADAS)系统的TDA4VM芯片;(2)用于 关系统的DRA829V处理器。这两款处理器都包含了用于加速数据密集型计算任务的专用加速器(如计算机视觉和深度学习等),而且它们也都集成了支持ISO26262功能安全的MCU核,使得我们可以用一颗芯片来同时承载ASIL-D高级别功能安全的控制任务和传感器数据处理这样的计算密集型任务。

    3.2.1 TDA4VM ADAS芯片

    基于Jacinto? 7架构的TDA4VM处理器专为L2+或以上级别的集中式ADAS域控制器平台而设计的,它集成了各种加速器、深度学习处理器和片上内存,具有强大的数据分析和处理能力,是一个全功能、可编程的高集成度ADAS域控处理器平台。

    这种多级处理能力使得TDA4VM能够胜任ADAS域的各种中心处理单元角色。比如:TDA4VM处理器支持接入8MP(800万像素)高分辨率的摄像头,更强大的前视摄像头可以帮助车辆看得更远,因此可以开发出更强的辅助驾驶增强功能。用户也可以用TDV4VM处理器同时操作4到6个300万像素的摄像头,并还可以将毫米波雷达、超声波雷达和激光雷达等其它多种传感器数据处理在一个芯片平台上进行深度融合(后融合)。还可以将TDA4VM处理器用作自动泊车系统中的中心处理器,实现360度的环视感知能力,从而可以开发出用户体验更好的360度全屏泊车系统。

    以下框图的左边是当前典型的ADAS 系统框图,主要数据处理部分是由GPU或NPU完成,在这颗应用处理器外,会集成MCU、外部ISP、以太 交换机和PCIe交换机等。右边是使用TDA4VM后的ADAS系统框图。TDA4把原来外部需要的上述模块集成到芯片中,其中包含通用处理部分的CPU、实时MCU、功能安全MCU、C7x DSP、MMA深度学习加速器、VPAC DMPAC视觉加速器、内部的ISP和以太 交换机,以及PCIe交换机等等。显然使用TDA4VM可以大大简化ADAS系统的硬件复杂度。

    图3-10 TDA4x域控处理器简化ADAS系统架构

    下图是TDA4VM处理器的Block Diagram。其芯片中关键特性如下:

  • 具有两个64位 Arm? Cortex?-A72微处理器子系统,工作频率高达1.8GHz,22K DMIPS;
  • 每个Cortex?-A72核集成了32KB L1 D-Cache和48KB L1 I-Cache。
  • 每个双核Cortex-A72 Cluster共享一个1MB大小的L2 Cache。
  • 有六个Arm? Cortex?-R5F MCU,工作频率高达1.0GHz,12 K DMIPS;
  • 每个核存储器为64K L2 RAM
  • 隔离安全岛中的MCU子系统有两个Arm? Cortex?-R5F MCU
  • 通用计算部分有四个Arm? Cortex?-R5F MCU
  • 两个C66x浮点DSP,工作频率高达1.35 GHz, 40 GFLOPS, 160 GOPS;
  • C7x浮点,矢量DSP,高达1.0 GHz, 80 GFLOPS, 256 GOPS;
  • 深度学习矩阵乘法加速器(MMA),1.0GHz高达8 TOPS (INT8);
  • 视觉处理加速器(VPAC)和图像信 处理器(ISP)和多个视角辅助加速器;
  • 深度和运动处理加速器(DMPAC);
  • 声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

    上一篇 2022年1月9日
    下一篇 2022年1月9日

    相关推荐