25 个常用 Matplotlib 图的 Python 代码,收藏收藏

优质文章,第一时间送达!

大家好,今天要分享给大家25个Matplotlib图的汇总,在数据分析和可视化中非常有用,文章较长,可以马起来慢慢练手。

# !pip install brewer2mpl

import numpy as np

import pandas as pd

import matplotlib as mpl

import matplotlib.pyplot as plt

import seaborn as sns

import warnings; warnings.filterwarnings(action=’once’)

large = 22; med = 16; small = 12

params = {‘axes.titlesize’: large,

‘legend.fontsize’: med,

‘figure.figsize’: (16, 10),

‘axes.labelsize’: med,

‘axes.titlesize’: med,

‘xtick.labelsize’: med,

‘ytick.labelsize’: med,

‘figure.titlesize’: large}

plt.rcParams.update(params)

plt.style.use(‘seaborn-whitegrid’)

sns.set_style(“white”)

%matplotlib inline

# Version

print(mpl.__version__) #> 3.0.0

print(sns.__version__) #> 0.9.0

1. 散点图

Scatteplot是用于研究两个变量之间关系的经典和基本图。如果数据中有多个组,则可能需要以不同颜色可视化每个组。在Matplotlib,你可以方便地使用。

# Import dataset

midwest = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv”)

# Prepare Data

# Create as many colors as there are unique midwest[‘category’]

categories = np.unique(midwest[‘category’])

colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

# Draw Plot for Each Category

plt.figure(figsize=(16, 10), dpi= 80, facecolor=’w’, edgecolor=’k’)

for i, category in enumerate(categories):

plt.scatter(‘area’, ‘poptotal’,

data=midwest.loc[midwest.category==category, :],

s=20, c=colors[i], label=str(category))

# Decorations

plt.gca.set(xlim=(0.0, 0.1), ylim=(0, 90000),

xlabel=’Area’, ylabel=’Population’)

plt.xticks(fontsize=12); plt.yticks(fontsize=12)

plt.title(“Scatterplot of Midwest Area vs Population”, fontsize=22)

plt.legend(fontsize=12)

plt.show

2. 带边界的气泡图

有时,您希望在边界内显示一组点以强调其重要性。在此示例中,您将从应该被环绕的数据帧中获取记录,并将其传递给下面的代码中描述的记录。encircle

from matplotlib import patches

from scipy.spatial import ConvexHull

import warnings; warnings.simplefilter(‘ignore’)

sns.set_style(“white”)

# Step 1: Prepare Data

midwest = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv”)

# As many colors as there are unique midwest[‘category’]

categories = np.unique(midwest[‘category’])

colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]

# Step 2: Draw Scatterplot with unique color for each category

fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor=’w’, edgecolor=’k’)

for i, category in enumerate(categories):

plt.scatter(‘area’, ‘poptotal’, data=midwest.loc[midwest.category==category, :], s=’dot_size’, c=colors[i], label=str(category), edgecolors=’black’, linewidths=.5)

# Step 3: Encircling

# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot

def encircle(x,y, ax=None, **kw):

if not ax: ax=plt.gca

p = np.c_[x,y]

hull = ConvexHull(p)

poly = plt.Polygon(p[hull.vertices,:], **kw)

ax.add_patch(poly)

# Select data to be encircled

midwest_encircle_data = midwest.loc[midwest.state==’IN’, :]

# Draw polygon surrounding vertices

encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec=”k”, fc=”gold”, alpha=0.1)

encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec=”firebrick”, fc=”none”, linewidth=1.5)

# Step 4: Decorations

plt.gca.set(xlim=(0.0, 0.1), ylim=(0, 90000),

xlabel=’Area’, ylabel=’Population’)

plt.xticks(fontsize=12); plt.yticks(fontsize=12)

plt.title(“Bubble Plot with Encircling”, fontsize=22)

plt.legend(fontsize=12)

plt.show

3. 带线性回归最佳拟合线的散点图

如果你想了解两个变量如何相互改变,那么最合适的线就是要走的路。下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从下面的调用中删除该参数。

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

df_select = df.loc[df.cyl.isin([4,8]), :]

# Plot

sns.set_style(“white”)

gridobj = sns.lmplot(x=”displ”, y=”hwy”, hue=”cyl”, data=df_select,

height=7, aspect=1.6, robust=True, palette=’tab10′,

scatter_kws=dict(s=60, linewidths=.7, edgecolors=’black’))

# Decorations

gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

plt.title(“Scatterplot with line of best fit grouped by number of cylinders”, fontsize=20)

每个回归线都在自己的列中

或者,您可以在其自己的列中显示每个组的最佳拟合线。你可以通过在里面设置参数来实现这一点。

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

df_select = df.loc[df.cyl.isin([4,8]), :]

# Each line in its own column

sns.set_style(“white”)

gridobj = sns.lmplot(x=”displ”, y=”hwy”,

data=df_select,

height=7,

robust=True,

palette=’Set1′,

col=”cyl”,

scatter_kws=dict(s=60, linewidths=.7, edgecolors=’black’))

# Decorations

gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))

plt.show

4. 抖动图

通常,多个数据点具有完全相同的X和Y值。结果,多个点相互绘制并隐藏。为避免这种情况,请稍微抖动点,以便您可以直观地看到它们。这很方便使用

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

# Draw Stripplot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)

# Decorations

plt.title(‘Use jittered plots to avoid overlapping of points’, fontsize=22)

plt.show

5. 计数图

避免点重叠问题的另一个选择是增加点的大小,这取决于该点中有多少点。因此,点的大小越大,周围的点的集中度就越大。

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

df_counts = df.groupby([‘hwy’, ‘cty’]).size.reset_index(name=’counts’)

# Draw Stripplot

fig, ax = plt.subplots(figsize=(16,10), dpi= 80)

sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts*2, ax=ax)

# Decorations

plt.title(‘Counts Plot – Size of circle is bigger as more points overlap’, fontsize=22)

plt.show

6. 边缘直方图

边缘直方图具有沿X和Y轴变量的直方图。这用于可视化X和Y之间的关系以及单独的X和Y的单变量分布。该图如果经常用于探索性数据分析(EDA)。

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

# Create Fig and gridspec

fig = plt.figure(figsize=(16, 10), dpi= 80)

grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)

# Define the axes

ax_main = fig.add_subplot(grid[:-1, :-1])

ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])

ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])

# Scatterplot on main ax

ax_main.scatter(‘displ’, ‘hwy’, s=df.cty*4, c=df.manufacturer.astype(‘category’).cat.codes, alpha=.9, data=df, cmap=”tab10″, edgecolors=’gray’, linewidths=.5)

# histogram on the right

ax_bottom.hist(df.displ, 40, histtype=’stepfilled’, orientation=’vertical’, color=’deeppink’)

ax_bottom.invert_yaxis

# histogram in the bottom

ax_right.hist(df.hwy, 40, histtype=’stepfilled’, orientation=’horizontal’, color=’deeppink’)

# Decorations

ax_main.set(title=’Scatterplot with Histograms

displ vs hwy’, xlabel=’displ’, ylabel=’hwy’)

ax_main.title.set_fontsize(20)

for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels + ax_main.get_yticklabels):

item.set_fontsize(14)

xlabels = ax_main.get_xticks.tolist

ax_main.set_xticklabels(xlabels)

plt.show

7.边缘箱形图

边缘箱图与边缘直方图具有相似的用途。然而,箱线图有助于精确定位X和Y的中位数,第25和第75百分位数。

# Import Data

df = pd.read_csv(“https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv”)

# Create Fig and gridspec

fig = plt.figure(figsize=(16, 10), dpi= 80)

grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)

# Define the axes

ax_main = fig.add_subplot(grid[:-1, :-1])

ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])

ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])

# Scatterplot on main ax

ax_main.scatter(‘displ’, ‘hwy’, s=df.cty*5, c=df.manufacturer.astype(‘category’).cat.codes, alpha=.9, data=df, cmap=”Set1″, edgecolors=’black’, linewidths=.5)

# Add a graph in each part

sns.boxplot(df.hwy, ax=ax_right, orient=”v”)

sns.boxplot(df.displ, ax=ax_bottom, orient=”h”)

# Decorations ——————

# Remove x axis name for the boxplot

ax_bottom.set(xlabel=”)

ax_right.set(ylabel=”)

# Main Title, Xlabel and YLabel

ax_main.set(title=’Scatterplot with Histograms

displ vs hwy’, xlabel=’displ’, ylabel=’hwy’)

# Set font size of different components

ax_main.title.set_fontsize(20)

for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels + ax_main.get_yticklabels):

item.set_fontsize(14)

plt.show

8. 相关图

Correlogram用于直观地查看给定数据帧(或2D数组)中所有可能的数值变量对之间的相关度量。

# Import Dataset

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mtcars.csv”)

# Plot

plt.figure(figsize=(12,10), dpi= 80)

sns.heatmap(df.corr, xticklabels=df.corr.columns, yticklabels=df.corr.columns, cmap=’RdYlGn’, center=0, annot=True)

# Decorations

plt.title(‘Correlogram of mtcars’, fontsize=22)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.show

9. 矩阵图

成对图是探索性分析中的最爱,以理解所有可能的数字变量对之间的关系。它是双变量分析的必备工具。

# Load Dataset

df = sns.load_dataset(‘iris’)

# Plot

plt.figure(figsize=(10,8), dpi= 80)

sns.pairplot(df, kind=”scatter”, hue=”species”, plot_kws=dict(s=80, edgecolor=”white”, linewidth=2.5))

plt.show

# Load Dataset

df = sns.load_dataset(‘iris’)

# Plot

plt.figure(figsize=(10,8), dpi= 80)

sns.pairplot(df, kind=”reg”, hue=”species”)

plt.show

偏差

10. 发散型条形图

如果您想根据单个指标查看项目的变化情况,并可视化此差异的顺序和数量,那么发散条是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,并且可以立即传达这一点。

# Prepare Data

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mtcars.csv”)

x = df.loc[:, [‘mpg’]]

df[‘mpg_z’] = (x – x.mean)/x.std

df[‘colors’] = [‘red’ if x < 0 else ‘green’ for x in df[‘mpg_z’]]

df.sort_values(‘mpg_z’, inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,10), dpi= 80)

plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)

# Decorations

plt.gca.set(ylabel=’$Model$’, xlabel=’$Mileage$’)

plt.yticks(df.index, df.cars, fontsize=12)

plt.title(‘Diverging Bars of Car Mileage’, fontdict={‘size’:20})

plt.grid(linestyle=’–‘, alpha=0.5)

plt.show

11. 发散型文本

分散的文本类似于发散条,如果你想以一种漂亮和可呈现的方式显示图表中每个项目的价值,它更喜欢。

# Prepare Data

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mtcars.csv”)

x = df.loc[:, [‘mpg’]]

df[‘mpg_z’] = (x – x.mean)/x.std

df[‘colors’] = [‘red’ if x < 0 else ‘green’ for x in df[‘mpg_z’]]

df.sort_values(‘mpg_z’, inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,14), dpi= 80)

plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)

for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

t = plt.text(x, y, round(tex, 2), horizontalalignment=’right’ if x < 0 else ‘left’,

verticalalignment=’center’, fontdict={‘color’:’red’ if x < 0 else ‘green’, ‘size’:14})

# Decorations

plt.yticks(df.index, df.cars, fontsize=12)

plt.title(‘Diverging Text Bars of Car Mileage’, fontdict={‘size’:20})

plt.grid(linestyle=’–‘, alpha=0.5)

plt.xlim(-2.5, 2.5)

plt.show

12. 发散型包点图

发散点图也类似于发散条。然而,与发散条相比,条的不存在减少了组之间的对比度和差异。

# Prepare Data

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mtcars.csv”)

x = df.loc[:, [‘mpg’]]

df[‘mpg_z’] = (x – x.mean)/x.std

df[‘colors’] = [‘red’ if x < 0 else ‘darkgreen’ for x in df[‘mpg_z’]]

df.sort_values(‘mpg_z’, inplace=True)

df.reset_index(inplace=True)

# Draw plot

plt.figure(figsize=(14,16), dpi= 80)

plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)

for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):

t = plt.text(x, y, round(tex, 1), horizontalalignment=’center’,

verticalalignment=’center’, fontdict={‘color’:’white’})

# Decorations

# Lighten borders

plt.gca.spines[“top”].set_alpha(.3)

plt.gca.spines[“bottom”].set_alpha(.3)

plt.gca.spines[“right”].set_alpha(.3)

plt.gca.spines[“left”].set_alpha(.3)

plt.yticks(df.index, df.cars)

plt.title(‘Diverging Dotplot of Car Mileage’, fontdict={‘size’:20})

plt.xlabel(‘$Mileage$’)

plt.grid(linestyle=’–‘, alpha=0.5)

plt.xlim(-2.5, 2.5)

plt.show

13. 带标记的发散型棒棒糖图

带标记的棒棒糖通过强调您想要引起注意的任何重要数据点并在图表中适当地给出推理,提供了一种可视化分歧的灵活方式。

# Prepare Data

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mtcars.csv”)

x = df.loc[:, [‘mpg’]]

df[‘mpg_z’] = (x – x.mean)/x.std

df[‘colors’] = ‘black’

# color fiat differently

df.loc[df.cars == ‘Fiat X1-9’, ‘colors’] = ‘darkorange’

df.sort_values(‘mpg_z’, inplace=True)

df.reset_index(inplace=True)

# Draw plot

import matplotlib.patches as patches

plt.figure(figsize=(14,16), dpi= 80)

plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=1)

plt.scatter(df.mpg_z, df.index, color=df.colors, s=[600 if x == ‘Fiat X1-9’ else 300 for x in df.cars], alpha=0.6)

plt.yticks(df.index, df.cars)

plt.xticks(fontsize=12)

# Annotate

plt.annotate(‘Mercedes Models’, xy=(0.0, 11.0), xytext=(1.0, 11), xycoords=’data’,

fontsize=15, ha=’center’, va=’center’,

bbox=dict(boxstyle=’square’, fc=’firebrick’),

arrowprops=dict(arrowstyle=’-[, widthB=2.0, lengthB=1.5′, lw=2.0, color=’steelblue’), color=’white’)

# Add Patches

p1 = patches.Rectangle((-2.0, -1), width=.3, height=3, alpha=.2, facecolor=’red’)

p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor=’green’)

plt.gca.add_patch(p1)

plt.gca.add_patch(p2)

# Decorate

plt.title(‘Diverging Bars of Car Mileage’, fontdict={‘size’:20})

plt.grid(linestyle=’–‘, alpha=0.5)

plt.show

14.面积图

通过对轴和线之间的区域进行着色,区域图不仅强调峰值和低谷,而且还强调高点和低点的持续时间。高点持续时间越长,线下面积越大。

import numpy as np

import pandas as pd

# Prepare Data

df = pd.read_csv(“https://github.com/selva86/datasets/raw/master/economics.csv”, parse_dates=[‘date’]).head(100)

x = np.arange(df.shape[0])

y_returns = (df.psavert.diff.fillna(0)/df.psavert.shift(1)).fillna(0) * 100

# Plot

plt.figure(figsize=(16,10), dpi= 80)

plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor=’green’, interpolate=True, alpha=0.7)

plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor=’red’, interpolate=True, alpha=0.7)

# Annotate

plt.annotate(‘Peak

1975′, xy=(94.0, 21.0), xytext=(88.0, 28),

bbox=dict(boxstyle=’square’, fc=’firebrick’),

arrowprops=dict(facecolor=’steelblue’, shrink=0.05), fontsize=15, color=’white’)

# Decorations

xtickvals = [str(m)[:3].upper+”-“+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name)]

plt.gca.set_xticks(x[::6])

plt.gca.set_xticklabels(xtickvals[::6], rotation=90, fontdict={‘horizontalalignment’: ‘center’, ‘verticalalignment’: ‘center_baseline’})

plt.ylim(-35,35)

plt.xlim(1,100)

plt.title(“Month Economics Return %”, fontsize=22)

plt.ylabel(‘Monthly returns %’)

plt.grid(alpha=0.5)

plt.show

15. 有序条形图

有序条形图有效地传达了项目的排名顺序。但是,在图表上方添加度量标准的值,用户可以从图表本身获取精确信息。

# Prepare Data

df_raw = pd.read_csv(“https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv”)

df = df_raw[[‘cty’, ‘manufacturer’]].groupby(‘manufacturer’).apply(lambda x: x.mean)

df.sort_values(‘cty’, inplace=True)

df.reset_index(inplace=True)

# Draw plot

import matplotlib.patches as patches

fig, ax = plt.subplots(figsize=(16,10), facecolor=’white’, dpi= 80)

ax.vlines(x=df.index, ymin=0, ymax=df.cty, color=’firebrick’, alpha=0.7, linewidth=20)

# Annotate Text

for i, cty in enumerate(df.cty):

ax.text(i, cty+0.5, round(cty, 1), horizontalalignment=’center’)

# Title, Label, Ticks and Ylim

ax.set_title(‘Bar Chart for Highway Mileage’, fontdict={‘size’:22})

ax.set(ylabel=’Miles Per Gallon’, ylim=(0, 30))

plt.xticks(df.index, df.manufacturer.str.upper, rotation=60

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2020年5月6日
下一篇 2020年5月6日

相关推荐