CUDA 编程上手指南(一):CUDA C 编程及 GPU 基本知识

目录

1 CPU 和 GPU 的基础知识
2 CUDA 编程的重要概念
3 并行计算向量相加
4 实践
4.1 向量相加 CUDA 代码
4.2 实践向量相加
5 给大家的一点参考资料

1 CPU 和 GPU 的基础知识

提到处理器结构,有2个指标是经常要考虑的:延迟吞吐量。所谓延迟,是指从发出指令到最终返回结果中间经历的时间间隔。而所谓吞吐量,就是单位之间内处理的指令的条数。

下图1是 CPU 的示意图。从图中可以看出 CPU 的几个特点:

  1. CPU 中包含了多级高速的缓存结构。 因为我们知道处理运算的速度远高于访问存储的速度,那么奔着空间换时间的思想,设计了多级高速的缓存结构,将经常访问的内容放到低级缓存中,将不经常访问的内容放到高级缓存中,从而提升了指令访问存储的速度。
  2. CPU 中包含了很多控制单元。 具体有2种,一个是分支预测机制,另一个是流水线前传机制。
  3. CPU 的运算单元 (Core) 强大,整型浮点型复杂运算速度快。

图1:CPU 的示意图

所以综合以上三点,CPU 在设计时的导向就是减少指令的时延,我们称之为延迟导向设计,如下图3所示。

下图2是 GPU 的示意图,它与之前 CPU 的示意图相比有着非常大的不同。从图中可以看出 GPU 的几个特点 (注意紫色和黄色的区域分别是缓存单元和控制单元):

  1. GPU 中虽有缓存结构但是数量少。 因为要减少指令访问缓存的次数。
  2. GPU 中控制单元非常简单。 控制单元中也没有分支预测机制和数据转发机制。对于复杂的指令运算就会比较慢。
  3. GPU 的运算单元 (Core) 非常多,采用长延时流水线以实现高吞吐量。 每一行的运算单元的控制器只有一个,意味着每一行的运算单元使用的指令是相同的,不同的是它们的数据内容。那么这种整齐划一的运算方式使得 GPU 对于那些控制简单但运算高效的指令的效率显著增加。

图2:GPU 的示意图

所以,GPU 在设计过程中以一个原则为核心:增加简单指令的吞吐。因此,我们称 GPU 为吞吐导向设计,,如下图3所示。

图3:CPU 是延迟导向设计,GPU 是吞吐导向设计

那么究竟在什么情况下使用 CPU,什么情况下使用 GPU 呢?

CPU 在连续计算部分,延迟优先,CPU 比 GPU ,单条复杂指令延迟快10倍以上。

GPU 在并行计算部分,吞吐优先,GPU 比 CPU ,单位时间内执行指令数量10倍以上。

适合 GPU 的问题:

  1. 计算密集:数值计算的比例要远大于内存操作,因此内存访问的延时可以被计算掩盖。
  2. 数据并行:大任务可以拆解为执行相同指令的小任务,因此对复杂流程控制的需求较低。

2 CUDA 编程的重要概念

CUDA (Compute Unified Device Architecture),由英伟达公司2007年开始推出,初衷是为 GPU 增加一个易用的编程接口,让开发者无需学习复杂的着色语言或者图形处理原语。

OpenCL (Open Computing Languge) 是2008年发布的异构平台并行编程的开放标准,也是一个编程框架。OpenCL 相比 CUDA,支持的平台更多,除了 GPU 还支持 CPU、DSP、FPGA 等设备。

下面我们将以 CUDA 为例,介绍 GPU 编程的基本思想和基本操作。

首先主机端 (host)设备端 (device),主机端一般指我们的 CPU,设备端一般指我们的 GPU。

一个 CUDA 程序,我们可以把它分成3个部分:

第1部分是: 从主机 (host) 端申请 device memory,把要拷贝的内容从 host memory 拷贝到申请的 device memory 里面。

第2部分是: 设备端的核函数对拷贝进来的东西进行计算,来得到和实现运算的结果,图4中的 Kernel 就是指在 GPU 上运行的函数。

第3部分是: 把结果从 device memory 拷贝到申请的 host memory 里面,并且释放设备端的显存和内存。

图4:一个 CUDA 程序可以分成3个部分

CUDA 编程中的内存模型

这里就引出了一个非常重要的概念就是 CUDA 编程中的内存模型

从硬件的角度来讲:

CUDA 内存模型的最基本的单位就是 SP (线程处理器)。每个线程处理器 (SP) 都用自己的 registers (寄存器)local memory (局部内存)。寄存器和局部内存只能被自己访问,不同的线程处理器之间呢是彼此独立的。

由多个线程处理器 (SP) 和一块共享内存所构成的就是 SM (多核处理器) (灰色部分)。多核处理器里边的多个线程处理器是互相并行的,是不互相影响的。每个多核处理器 (SM) 内都有自己的 shared memory (共享内存),shared memory 可以被线程块内所有线程访问。

再往上,由这个 SM (多核处理器) 和一块全局内存,就构成了 GPU。一个 GPU 的所有 SM 共有一块 global memory (全局内存),不同线程块的线程都可使用。

上面这段话可以表述为:每个 thread 都有自己的一份 register 和 local memory 的空间。同一个 block 中的每个 thread 则有共享的一份 share memory。此外,所有的 thread (包括不同 block 的 thread) 都共享一份 global memory。不同的 grid 则有各自的 global memory。

图5:CUDA 内存模型,硬件角度

从软件的角度来讲:

  1. 线程处理器 (SP) 对应线程 (thread)。
  2. 多核处理器 (SM) 对应线程块 (thread block)。
  3. 设备端 (device) 对应线程块组合体 (grid)。

图6:CUDA 内存模型,软件角度

如下图6所示,所谓线程块内存模型在软件侧的一个最基本的执行单位,所以我们从这里开始梳理。线程块就是线程的组合体,它具有如下这些特点:

  1. 块内的线程通过共享内存、原子操作和屏障同步进行协作 (shared memory, atomic operations and barrier synchronization)
  2. 不同块中的线程不能协作。

如下图7所示的线程块就是由256个线程组成的,它执行的任务就是一个最基本的向量相加的一个操作。在线程块内,这256个线程的计算是彼此互相独立的,并行的。下面的这个 [i],就是如何确定每个线程的索引 (在显存中的位置)。在计算完以后 (图中弯箭头的头部),会设置一个时钟,将这256个线程的计算结果进行同步。

图7:一个256个线程组成的线程块

以上就是一个256位向量的加的操作的并行处理方法,得到最终的向量加的结果。

所谓 格 (grid),其实就是线程块的组合体,如下图8所示。

  1. 格 (grid) 内的线程块是彼此互相独立,互不影响的。
  2. 全局内存可以由所有的线程块进行访问。

CUDA 核函数由线程 格 (数组) 执行。每个线程都有一个索引,用于计算内存地址和做出控制决策。在计算完以后 (图中所有弯箭头的头部),会设置一个时钟,将这N个线程块的计算结果进行同步。

图8: 格就是线程块的组合体

线程块 id & 线程 id:定位独立线程的门牌

核函数需要确定每个线程在显存中的位置,我们之前提到 CUDA 的核函数是要在设备端来进行计算和处理的,在执行核函数时需要访问到每个线程的 registers (寄存器)local memory (局部内存)。在这个过程中需要确定每一个线程在显存上的位置。所以我们需要像图9那样使用线程块的 index线程的 index 来确定线程在显存上的位置。

图9:使用线程块的 index 和线程的 index 来确定线程在显存上的位置

如图9所示,图9中的线程块索引是2维的,每个 格都由2×2个线程块组成;线程索引是3维的,每个线程块都由2×4×2个线程组成,所以代码应该是:

图10:线程Id计算

图10中:M=N=2,P,Q,S=2,4,2。

每个线程x的那一维应该是线程块的索引×线程块的x维度大小+线程的索引。(设备端线程x的那一维的索引)。

每个线程y的那一维应该是线程块的索引×线程块的y维度大小+线程的索引。(设备端线程y的那一维的索引)。

线程束 (warp)

前面我们提到,如图11所示的每一行由1个控制单元加上若干计算单元所组成,这些所有的计算单元执行的控制指令是一个。这其实就是个非常典型的 “单指令多数据流机制”

图11:一个线程束 (warp):采用单指令多数据流机制

单指令多数据流机制是说:执行的指令是一条,只不过不同的计算单元使用的数据是不一样的。而上面这一行,我们就称之为一个线程束 (warp)

所以,SM 采用的 SIMT (Single-Instruction, Multiple-Thread,单指令多线程) 架构,warp (线程束) 是最基本的执行单元。一个 warp 包含32个并行 thread,这些 thread 以不同数据资源执行相同的指令。一个 warp 只包含一条指令,所以:warp 本质上是线程在 GPU 上运行的最小单元。

由于warp的大小为32,所以block所含的thread的大小一般要设置为32的倍数。

当一个 kernel 被执行时,grid 中的线程块被分配到 SM (多核处理器) 上,一个线程块的 thread 只能在一个SM 上调度,SM 一般可以调度多个线程块,大量的 thread 可能被分到不同的 SM 上。每个 thread 拥有它自己的程序计数器和状态寄存器,并且用该线程自己的数据执行指令,这就是所谓的 Single Instruction Multiple Thread (SIMT),如图12所示。

图12:Single Instruction Multiple Thread (SIMT)

3 并行计算向量相加

下面我们就用一个实际的例子来看看 CUDA 编程具体是如何操作的。例子就是两个长度为N的张量相加,如下图13所示。

图13:两个张量相加

在 CPU 中完成相加的操作很简单:

// Compute vector sum C = A+Bvoid vecAdd(float* A, float* B, float* C, int n){for (i= 0, i< n, i++)C[i] = A[i] + B[i];}int main(){// Memory allocation for A_h, B_h, and C_h// I/O to read A_hand B_h, N elements…vecAdd(A_h, B_h, C_h, N);}

要在 GPU 中完成这一操作,首先我们想一下它是否适合使用 GPU,我们当时总结了四个特点:

  1. 访问内存次数少,满足。
  2. 控制指令简单,无复杂分枝预测,跳转指令,满足。
  3. 计算指令简单,满足,是简单的加法操作。
  4. 并行度高,满足,不同的 [i] 之间不互相影响。

所以,向量相家的任务适合在 GPU 上编程。

再回顾下 GPU 运算步骤,如图4所示:

一个 CUDA 程序,我们可以把它分成3个部分:

第1部分是: 从主机 (host) 端申请 device memory,把要拷贝的内容从 host memory 拷贝到申请的 device memory 里面。

第2部分是: 设备端的核函数对拷贝进来的东西进行计算,来得到和实现运算的结果,图4中的 Kernel 就是指在 GPU 上运行的函数。

第3部分是: 把结果从 device memory 拷贝到申请的 host memory 里面,并且释放设备端的显存和内存。

如下:

#include <cuda.h>void vecAdd(float* A, float* B, float* C, int n){int size = n* sizeof(float);float* A_d, B_d, C_d;…1. // Allocate device memory for A, B, and C// copy A and B to device memory2. // Kernel launch code –to have the device// to perform the actual vector addition3. // copy C from the device memory// Free device vectors}

下面我们把这些内容细化到函数。

设备端代码:

  1. 读写线程寄存器
  2. 读写 Grid 中全局内存
  3. 读写 block 中共享内存

主机端代码:

  1. 申请显存,内存
  2. Grid 中全局内存拷贝转移 (显存,内存互相拷贝)
  3. 内存,显存释放

内存是插在主板上的内存插槽上的内存条,而显存是独立显卡上焊在显卡上的内存芯片。

申请显存的函数 cudaMalloc():

在主机端完成显存的申请,得到相应的指针。

图14:申请显存的函数 cudaMalloc()

释放显存的函数 cudaFree( ):

将指向显存的指针释放掉。

图15:释放显存的函数 cudaFree( )

内存和显存之间互相拷贝的函数 cudaMemcpy( ):

参数含义是:终点的指针,起点的指针,拷贝的大小,模式 (主机端到设备端,设备端到主机端,设备端之间的拷贝)

图16:内存和显存之间互相拷贝的函数 cudaMemcpy( )

以上三个函数是 CUDA 帮我们写好的,如果调用的话需要先:

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2021年10月8日
下一篇 2021年10月8日

相关推荐