GitChat·人工智能 | 肿瘤医疗影像 AI 识别技术实践

前言

医学影像与人工智能的结合,是数字医疗领域较新的分支和产业热点。医学影像的解读需要长时间专业经验的积累,医生的培养周期相对较长,很多程度上,深度学习和医生的学习过程是一样的,通过海量知识的学习理解和应用,而人工智能在对图像的检测效率和精度两个方面,可以做得比专业医生更快。

大数据与人工智能等前沿技术在医疗领域应用已经成为一种趋势,将大数据驱动的人工智能应用于癌症诊断中,无疑为患者僻出一线生机,不仅可以挽救无数患者的生命,而且对于缓解医疗资源和医患矛盾也有重大意义。

一、医学影像的简要介绍

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。前者是指图像行成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。

现代医学影像学的高速发展,医学影像技术已经由传统单一普通X线加血管造影检查形成包括UI、CT、CR、DR、MRI、PET、PET-CT、数字减影血管造影以及PACS等多种技术组成的医学影像学体系。影像成像技术的不断丰富使医学影像从“辅助检查手段”变为现代医学最重要的临床诊断和鉴别诊断方法。接下来医学影像将向三个方向发展:(1)由单一形态学影像检查设备向“形态+功能”的融合型影像发展;(2)由大型设备转向小型、简便的床边化仪器,未来将越来越多地投入应用到重症监护、家庭医疗、预防保健等领域;(3)现代医学影像技术与放射治疗手段结合,使诊断与治疗一体化。我们认为,更先进和便利的影像诊断设备将使临床诊疗将更加依赖于影像检查,带来影像需求增多,循环促进影像设备领域的发展。

大数据人工智能分析技术使得医学影像诊断软硬件变得更智能化。用深度学习技术分析医学影像和视频是一个新的研究方向。通过已训练好的卷积神经 络,能很快地搭建并训练自己的深度学习系统。

二、用 Python 进行图像处理的基础

用于图像处理的库有很多,其中 OpenCV(Open computer vision) 比较主流,基于C/C++,支持Linux/Windows/MacOS/Android/iOS,并提供了Python,Matlab和Java等语言的接口,因为其丰富的接口,优秀的性能和商业友好的使用许可,不管是学术界还是业界中都非常受欢迎。作为当前非常流行的动态语言之一,Python不仅使用非常简单,而且功能强大。通过Python来学习OpenCV框架,可以让你很快理解计算机视觉的基本概念以及重要算法。

图3-2中显示了卷积层神经 络结构中最重要的部分,这个部分被称之为过滤器(filter)或者内核(kernel)。因为TensorFlow文档中将这个结构称之为过滤器(filter),所以我们将统称这个结构为过滤器。如图4所示,过滤器可以将当前层神经 络上的一个子节点矩阵转化为下一层神经 络上的一个单位节点矩阵。单位节点矩阵指的是一个长和宽都为1,但深度不限的节点矩阵。

我们通过一个图像分类问题介绍卷积神经 络是如何工作的。下面是卷积神经 络判断一个图片是否包含“儿童”的过程,包括四个步骤:图像输入(InputImage)→卷积(Convolution)→最大池化(MaxPooling)→全连接神经 络(Fully-ConnectedNeural Network)计算。

图4-1被橙色曲线所标注的区域是为此图中可见的部分癌巢(细胞发生癌变的区域);癌巢与正常区域看起来十分不同,几个蓝色方框选取的区域即是正常区域的示例。这些不同主要是由于癌细胞的形态学特征和相互间的排列分布,与正常区域的细胞截然不同而造成的。

胃癌病理切片识别的目标是利于深度卷积神经 络技术,使计算机能够自动地将胃癌数字组织病理切片的局部视野中的癌巢快速精准地标识出来。

选取胃癌病理切片,为常规HE染色,放大倍数20×,图片大小为2048×2048像素,tiff 格式。选取200个病人案例(80%癌症、20%非癌症),共计2000张病理切片图片,训练集数量1500张,测试集数量500张。

数据标注:

病理专家将数据标记(双盲评估+验证)为有无癌症,并用线条画出肿瘤区域轮廓,提供知识图谱说明。

关于胃癌病理切片AI识别其实是2017中国大数据人工智能创新创业大赛的一个赛题。大赛官 :http://www.datadreams.org/race-race-3.html 我是2016年上海BOT大赛聊天机器人的参赛者,这里算是免费给他们打个广告,有兴趣的同学可以找我组团打比赛。

五、AI 技术在医疗领域的前景分析

人工智能的最大特点就是高效的计算和精准的分析与决策,这一点刚好击中现在的医疗痛点,或能从根本上解决医疗资源供不应求的局面。医学影像的识别是人工智能切入医疗行业的一个切入点,因为病理科,放射科医生读片是医疗领域的一个明显的痛点。未来医疗一定是向精准个性化医疗的方向发展,但是发展路途上也有很多障碍,比如电子病历数据分散在各家医院,数据的收集整理工作是一个漫长而艰难的任务。分析病历文本的NLP技术目前也不是很成熟,在构建医疗知识图谱的过程中,需要大量专业医生的参与等等。人工智能+医疗,一定是需要人工智能人才+医生通力合作才能研发出适合医生的智能辅助诊断系统。


实录:《王晓明:肿瘤医疗影像 AI 识别技术实战解析》


这里写图片描述

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2017年7月21日
下一篇 2017年7月21日

相关推荐