一位导师下载好了《王者荣耀》,还鼓励她的博士生们去玩一玩。
真的很难想象,这种“名场面”就真真儿的发生在了国内顶级学府——北京大学。
……
这位导师叫李文新,是北大信息科学技术学院的一名教授。
△ 《失控玩家》剧照
游戏AI到底拥有何种魅力,能让李文新如此痴迷/p>
在游戏里搞AI
先来看看李文新带着博士们,是怎么打的《王者荣耀》。
他们要做的,其实就是在限定的时间和资源内,训练出一个最优决策模型,并把它部署到游戏AI对战服务器平台上。
这就像是一个“炼丹”的过程,让他们的智能体通过训练,练就各种“功法”,然后去和别人家的智能体过招。
例如在之前的一场比赛中,《王者荣耀》英雄间的博弈是这样的:
打麻将是这样的:
在这个AI平台上,用户可以提交自己的智能体程序进行AI之间的对战,也可以亲自作为玩家参与到与AI的对决中。
刚才展示的斗地主、国标麻将的例子,就是在Botzone中的较量。
而除了这两款游戏,Botzone还提供了坦克大战、扫雷、俄罗斯方块和它们的各种变体。
李文新还在北大开了一门《游戏中的AI算法》选修课,作业是设计打各种游戏的AI,受到同学们的欢迎。
……
不难看出,李文新是一个资深游戏迷了。
但令人意外的是,在游戏AI这个领域,她却属于“转型选手”。
半路“出家”到游戏AI
如此“爱玩”的李文新教授,其实是最近几年才把研究方向转到游戏AI上的。
她早些年主要研究生物特征识别,是国际上最早从事自动化掌纹识别的研究者之一,后来还扩展到更难识别、也更不容易伪造的指静脉识别。
说到这里李教授还透露了一个小秘密,2009到2014年间,北大课外锻炼考勤使用的指静脉识别系统就是她们团队做的。
那为何不沿着这个方向继续做下去/p>
李教授的回答稍微有点“凡尔赛”:她觉得自己在生物特征识别上的研究算是成功了,可以告一段落了。
故事是这样的。
随着她带的学生陆续毕业,其中两位博士创业开了家公司,在教育考试,银行, 保医保等领域都接了大项目,把团队的科研成果实际落地了。
李文新教授认为学术界的使命就是开辟一个新的领域,具体到应用中怎么降低成本、产生效益那是工业界该考虑的事。
所以她做为一个学者现在该做的是去寻找下一个领域。
生物特征识别其实是她在香港理工大学读博士时导师的研究方向。更早时候她在北大读硕士时,导师带着她研究的是地理信息系统。
前两个研究方向等于都是导师帮她选择的,而这一次转型,她想自己去寻找新的挑战。
那又是为什么选到了游戏AI这个方向/p>
虽然李文新教授自己从小也对棋牌类和体育运动类的游戏很感兴趣,但与游戏AI结缘的故事要从2002年开始,她组织北大学生参加ACM主办的国际大学生程序设计竞赛(ACM/ICPC)说起。
当时除了正赛还会在旁边开设一个分赛场,与正赛里的高难度算法题不同,分赛场的项目往往带有对抗性质,比如机器人足球赛。
2005年的ICPC亚洲区预选赛在李教授的推动下正是在北京大学举办,当年对抗赛的项目是“坦克大战”。
在一定规则下,每个参赛队伍为坦克制定一套策略,然后上场对战,输了的还可以现场修改代码继续参加下一轮。
以AlphaGo为代表的强化学习技术是当前游戏AI研究的主流方法,不过李文新教授的研究并不仅限于这里。
具体内容还包括游戏AI的复杂度分析、游戏AI对战能力和学习能力的评测方法、游戏AI的学习成本分析、游戏AI的模仿和倾向性聚类,甚至游戏对局的自动解说、新模式游戏设计等等。
当初的Botzone对战平台也发展成了知名的多智能体博弈系统,有8万多个AI在上面总共进行过3900多万次对局。
Botzone上产生的大量对战数据也成了游戏AI进一步研究的宝贵资料。
并且这些数据是开放下载的,让全国各地的大学生,还有一些中学生团队都可以在Botzone上面学习和比赛。
这些年的研究和教学经历让李文新教授越来越觉得“游戏AI是人工智能该有的样子”。
“游戏AI,是真的人工智能”
游戏AI应当是AI主流方式之一。
这是李文新对游戏AI的评价。
其实细想一下,这并不难理解。
游戏AI研究的是面对一个场景如何决策的问题,在现实世界里,如何决策体现了人类的高级智能。
我们只需要将现实世界建模成游戏环境,就可以在游戏环境中寻找解决现实世界问题的方法,之后把找到的解决方法还原到现实世界中去解决真实的问题。
这是一种非常经济而有效的方法。
更重要的是,由于强化学习的方法可以使AI在环境中自我成长,很可能获得超越人类的决策智能,这时人类很可能要反过来向AI学习了。
游戏环境是人类定义的,所以游戏的难度和参数是自主可控的,有非常大的弹性,这就使得游戏成为人工智能技术最好的试验场。
提高游戏的难度,就可以使得最新的硬件和各种最新算法有了用武之地。
像“深蓝”,使用了并行计算机和并行程序设计技术;AlphaGo使用了TPU及深度学习和强化学习技术。借助游戏提供的高难度决策问题,硬件和软件技术在解决难题过程中都有了突破性提升。
当一个问题过于困难时,我们也可以降低游戏的难度,使原本困难的问题得到部分解决,进而再逐步提升难度,递进式解决困难问题。
想想我们玩儿过的电子游戏:赛车、CS、DOTA、我的世界、星际争霸……,不是真实,胜似真实。
我们在其中的体验、感受、决策也可以迁移到现实世界中。
如果在星际争霸中几个AI学会了合作布阵,那同样的方法可用于真实世界的机器人对抗。
如果一个AI在游戏里会开赛车,而游戏环境尽量逼近真实,那这个AI就能成为自动驾驶技术的起点。
其实游戏离现实并不遥远,它无需绑缚在传统产业上也能体现其价值。
游戏本身就是一个前景巨大的产业,在解决了衣食住行这些人类最基本的需求之后,精神需求就被提上日程。
和读一本书、看一场电影相比,打一场游戏也并不低级。恰恰相反,在游戏中我们可能会更多用脑,完全主动地参与。
就像有些书是禁书,有些电影少儿不宜一样,游戏的内容也需要监督和把控。
在游戏产业中,不只游戏AI会用到人工智能技术,游戏的生产、运维中,也是处处都会涉及到AI技术。可以说人工智能技术在游戏产业中大有可为。
在被问到是否赞同“下一个AI里程碑可能会在复杂策略游戏中诞生”时,李文新表示她是非常认同的。因为现在越来越多的研究者正在兴趣盎然地研究这一问题。
不过,在她的眼里,游戏AI还有更深一层的意义:
游戏AI是活在游戏里的“人”,人也是活在人生的大戏中,两者可以互相启发。
……
最后,如果想要更加深入地走进李文新教授的游戏AI世界,敬请关注今年由CNCC举办的计算机大会。
本届大会中,李文新教授将会围绕《游戏AI算法与平台》展开讨论。
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!