理发店模型之性能测试

当然,我要说明的是,这个模型仅仅是1个模型,它与大家实际工作中遇到的各式各样的情况未必都可以一一对应,但是大的方向和趋势应该是一致的。

相信大家都进过或见过理发店,一间或大或小的铺面,1个或几个理发师,几张理发用的椅子和供顾客等待的长条板凳。

这张图中展示的是1个标准的软件性能模型。在图中有三条曲线,分别表示资源的利用情况(Utilization,包括硬件资源和软件资源)、吞吐量(Throughput,这里是指每秒事务数)以及响应时间(Response Time)。图中坐标轴的横轴从左到右表现了并发用户数(Number of Concurrent Users)的不断增长。

在这张图中我们可以看到,最开始,随着并发用户数的增长,资源占用率和吞吐量会相应的增长,但是响应时间的变化不大;不过当并发用户数增长到一定程度后,资源占用达到饱和,吞吐量增长明显放缓甚至停止增长,而响应时间却进一步延长。如果并发用户数继续增长,你会发现软硬件资源占用继续维持在饱和状态,但是吞吐量开始下降,响应时间明显的超出了用户可接受的范围,并且最终导致用户放弃了这次请求甚至离开。

根据这种性能表现,图中划分了三个区域,分别是Light Load(较轻的压力)、Heavy Load(较重的压力)和Buckle Zone(用户无法忍受并放弃请求)。在Light Load和Heavy Load 两个区域交界处的并发用户数,我们称为“最佳并发用户数(The Optimum Number of Concurrent Users)”,而Heavy Load和Buckle Zone两个区域交界处的并发用户数则称为“最大并发用户数(The Maximum Number of Concurrent Users)”。

当系统的负载等于最佳并发用户数时,系统的整体效率最高,没有资源被浪费,用户也不需要等待;当系统负载处于最佳并发用户数和最大并发用户数之间时,系统可以继续工作,但是用户的等待时间延长,满意度开始降低,并且如果负载一直持续,将最终会导致有些用户无法忍受而放弃;而当系统负载大于最大并发用户数时,将注定会导致某些用户无法忍受超长的响应时间而放弃。

对应到我们上面理发店的例子,每小时3个顾客就是这个理发店的最佳并发用户数,而每小时9个顾客则是它的最大并发用户数。当每小时都有3个顾客到来时,理发店的整体工作效率最高;而当每小时都有9个顾客到来时,前几个小时来的顾客还可以忍受,但是随着等待的顾客人数越来越多,等待时间越来越长,最终还是会有顾客无法忍受而离开。同时,随着理发店里顾客人数的增多和理发师工作时间的延长,理发师会逐渐产生疲劳,还要多花一些时间来清理环境和维持秩序,这些因素将最终导致理发师的工作效率随着顾客人数的增多和工作的延长而逐渐的下降,到最后可能要1.5小时甚至2个小时才能剪完1个发了。

当然,如果一开始就有10个顾客到来,则注定有1位顾客剪不到头发了。

进一步理解“最佳并发用户数”和“最大并发用户数”

在上一节中,我们详细的描述了并发用户数同资源占用情况、吞吐量以及响应时间的关系,并且提到了两个新的概念——“最佳并发用户数(The Optimum Number of Concurrent Users)”和“最大并发用户数(The Maximum Number of Concurrent Users)”。在这一节中,我们将对“最佳并发用户数”和“最大并发用户数”的定义做更加清晰和明确的说明。

对于一个确定的被测系统来说,在某个具体的软硬件环境下,它的“最佳并发用户数”和“最大并发用户数”都是客观存在。以“最佳并发用户数”为例,假如一个系统的最佳并发用户数是50,那么一旦并发量超过这个值,系统的吞吐量和响应时间必然会 “此消彼长”;如果系统负载长期大于这个数,必然会导致用户的满意度降低并最终达到一种无法忍受的地步。所以我们应该 保证最佳并发用户数要大于系统的平均负载。

要补充的一点是,当我们需要对一个系统长时间施加压力——例如连续加压3-5天,来验证系统的可靠性或者说稳定性时,我们所使用的并发用户数应该等于或小于“最佳并发用户数”——大家也可以结合上面的讨论想想这是为什么 ^_^

而对于最大并发用户数的识别,需要考虑和鉴别一下以下两种情况:

2. 在响应时间还没有到达用户可忍受的最大限度前,有可能已经出现了用户请求的失败。以理发店模型为例,如果理发店只能容纳6位顾客,那么当7位顾客同时来到理发店时,虽然我们可以知道所有顾客都能在可容忍的时间内剪完头发,但是因为理发店容量有限,最终只好有一位顾客打道回府,改天再来。

对于一个系统来说,我们应该 确保系统的最大并发用户数要大于系统需要承受的峰值负载。

如果你已经理解了上面提到的全部的概念,我想你可以展开进一步的思考,回头看一下自己以往做过的性能测试,看看是否可以对以往的工作产生新的理解。也欢迎大家在这里提出自己的心得或疑惑,继续讨论下去。

理发店模型的进一步扩展

这一节中我会提到一些对理发店模型的扩展,当然,我依然是只讲述现实中的理发店的故事,至于如何将这些扩展同性能测试以及性能解决方案等方面关联起来,就留给大家继续思考了 ^_^

扩展场景1:有些顾客已经是理发店的老顾客,他们和理发师已经非常熟悉,理发师可以不用花费太多时间沟通就知道这位顾客的想法。并且理发师对这位顾客的脑袋的形状也很熟悉,所以可以更快的完成一次理发的工作。

扩展场景2:理发店并不是只有剪发一种业务,还提供了烫发染发之类的业务,那么当顾客提出新的要求时,理发师服务一位顾客的时间可能会超过标准的1小时。而且这时如果要计算每位顾客的等待时间就变得复杂了很多,有些顾客的排队时间会比原来预计的延长,并最终导致他们因为无法忍受而离开。

扩展场景3:随着烫发和染发业务的增加,理发师们决定分工,两位专门剪发,一位专门负责烫发和染发。

扩展场景4:理发店的生意越来越好,理发师的数量和理发店的门面已经无法满足顾客的要求,于是理发店的老板决定在旁边再开一家店,并招聘一些工作能力更强的理发师。

扩展场景5:理发店的生意变得极为火爆了,两家店都无法满足顾客数量增长的需求,并且有些顾客开始反映到理发店的路途太远,到了以后又因为烫发和染发的人太多而等太久。可是理发店的老板也明白烫发和染发的收入要远远高于剪发阿,于是他脑筋一转,决定继续改变策略,在附近的几个大型小区租用小的铺面开设分店,专职剪发业务;再在市区的繁华路段开设旗舰店,专门为烫发、染发的顾客,以及VIP顾客服务。并增设800电话,当顾客想要剪发时,可以拨打这个电话,并由服务人员根据顾客的居住地点,将其指引到距离最近的一家分店去。

这篇文章就先写到这里了,希望大家在看完之后可以继续思考一下,也写出自己的心得体会或者新的想法,记下自己的不解和疑惑,让我们在不断的交流和讨论中走的更远 ^_^

性能测试相关术语的英文书写方法(不断更新ing)——知道了这些术语在英文中的正确书写方法之后,可以通过 Google 更加高效的获取到更多有用的资料

理解性能

在这篇短文中,我将尽可能用简洁清晰的文字写下我对“性能”的看法,并澄清几个容易混淆的概念,帮助大家更好的理解“性能”的含义。

如何评价性能的优劣: 用户视角 vs. 系统视角

对于最终用户(End-User)来说,评价系统的性能好坏只有一个字——“快”。最终用户并不需要关心系统当前的状态——即使系统这时正在处理着成千上万的请求,对于用户来说,由他所发出的这个请求是他唯一需要关心的,系统对用户请求的响应速度决定了用户对系统性能的评价。

而对于系统的运营商和开发商来说,期望的是能够让尽可能多的用户在任意时刻都拥有最好的体验,这就要确保系统能够在同一时间内处理更多的用户请求。正如在《理发店模型》一文中所描述的:系统的负载(并发用户数)与吞吐量(每秒事务数)、响应时间以及资源利用率(包括软硬件资源)之间存在着一个“此消彼长”的关系。因此,从系统的运营商和开发商的角度来看,所谓的“性能”是一个整体的概念,是系统的负载与吞吐量、可接受的响应时间以及资源利用率之间的平衡。

换句话说,“好的性能”意味着更大的最佳并发用户数(The Optimum Number of Concurrent Users)和 最大并发用户数(The Maximum Number of Concurrent Users)。有关“最佳/最大并发用户数”的概念请参见《理发店模型》一文。
另外,从系统的视角来看,所需要关注的还包括三个与“性能”有关的属性:可靠性(Reliability),可伸缩性(Scalability)和 可恢复性(Recoverability)——我将会在本系列文章的第五篇“无处不在的性能测试”中专门讨论这三个属性的含义和相关的实践经验。

响应时间

性能测试,并非 络应用专属

软件的性能和性能测试都是伴随着 络应用的兴起而逐渐被重视起来的,但是软件性能和性能测试却并非 络应用的专属名词,因为单机版的应用同样需要考虑性能问题。下面举几个简单的例子来方便大家的理解:

2. 当在Excel中使用嵌套的统计和数学函数对几万行记录进行统计分析时,是否每次都要两三分钟才能看到结果/p>

3. 杀毒软件是否每次都要花费两个小时才能完成一次对所有的分区的扫描/p>

4. 是否每次在手机的通讯簿中根据姓名搜索某个人的联系方式都要三四秒钟才有响应/p>

如果大家有兴趣,也可以通过Google搜索到更多的有关单机应用性能测试的资料。

获取有效的性能需求

一个实际的例子

这是一个证券行业系统中某个业务的“实际需求”——实际上是我根据通过 络搜集到的数据杜撰出来的,不过看起来像是真实的 ^_^

系统总容量达到日委托6000万笔,成交9000万笔

系统处理速度每秒7300笔,峰值处理能力达到每秒10000笔

实际股东帐 数3000万

这个例子中已经包括几个明确的需求:

最佳并发用户数需求:每秒7300笔

最大并发用户数需求:峰值处理能力达到每秒10000笔

基础数据容量:实际股东帐 数3000万

业务数据容量:日委托6000万笔,成交9000万笔——可以根据这个推算出每周、每月、每年系统容量的增长模型

什么是“有效的”性能需求/p>

要想获得有效的性能需求,就要先了解什么样的需求是“有效的”。有效的性能需求应该符合以下三个条件。

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2011年8月16日
下一篇 2011年8月17日

相关推荐