【转】用 Go 构建一个区块链

Part 1: 基本原型

引言

区块链是 21 世纪最具革命性的技术之一,它仍然处于不断成长的阶段,而且还有很多潜力尚未显现出来。 本质上,区块链只是一个分布式数据库而已。 不过,使它独一无二的是,区块链是一个公开的数据库,而不是一个私人数据库,也就是说,每个使用它的人都有一个完整或部分的副本。 只有经过其他数据库管理员的同意,才能向数据库中添加新的记录。 此外,也正是由于区块链,才使得加密货币和智能合约成为现实。

在本系列文章中,我们将实现一个简化版的区块链,基于它来构建简化版的加密货币。

区块

让我们从 “区块链” 中的 “区块” 谈起。在区块链中,存储有效信息的是区块。比如,比特币区块存储的有效信息,就是比特币交易,交易信息也是所有加密货币的本质。除此以外,区块还包含了一些技术信息,比如版本,当前时间戳和前一个区块的哈希。

  • Timestamp 是当前时间戳,也就是区块创建的时间。
  • Data 是区块存储的实际有效的信息。
  • PrevBlockHash 存储的是前一个块的哈希。
  • Hash 是当前块的哈希。

在比特币技术规范中,TimestampPrevBlockHashHash 是区块头(block header),区块头是一个单独的数据结构。而交易,也就是这里的 Data, 是另一个单独的数据结构。为了简便起见,我把这两个混合在了一起。

那么,我们要如何计算哈希呢何计算哈希,是区块链一个非常重要的部分。正是由于这个特性,才使得区块链是安全的。计算一个哈希,是在计算上非常困难的一个操作。即使在高速电脑上,也要花费不少时间 (这就是为什么人们会购买 GPU 来挖比特币) 。这是一个有意为之的架构设计,它故意使得加入新的区块十分困难,因此可以保证区块一旦被加入以后,就很难再进行修改。在本系列未来几篇文章中,我们将会讨论和实现这个机制。

目前,我们仅取了 Block 结构的一些字段(Timestamp, Data 和 PrevBlockHash),并将它们相互连接起来,然后在连接后的结果上计算一个 SHA-256 的哈希. 让我们在方法中完成这个任务:

接下来,按照 Golang 的惯例,我们会实现一个用于简化创建一个区块的函数:

这就是区块部分的全部内容了!

区块链

下面让我们来实现一个区块链。本质上,区块链仅仅是一个有着特定结构的数据库,是一个有序,后向连接的列表。这也就是说,区块按照插入的顺序进行存储,每个块都被连接到前一个块。这样的结构,能够让我们快速地获取链上的最新块,并且高效地通过哈希来检索一个块。

在 Golang 中,可以通过一个 array 和 map 来实现这个结构:array 存储有序的哈希(Golang 中 array 是有序的),map 存储 hask -> block 对(Golang 中, map 是无序的)。 但是在基本的原型阶段,我们只用到了 array,因为现在还不需要通过哈希来获取块。

这就是我们的第一个区块链!我从来没有想过它会是这么容易。

现在,让我们能够给它添加一个块:

完成!不过,真的就这样了吗/p>

为了加入一个新的块,我们必须要有一个已有的块,但是,现在我们的链是空的,一个块都没有!所以,在任何一个区块链中,都必须至少有一个块。这样的块,也就是链中的第一个块,通常叫做创世块(genesis block). 让我们实现一个方法来创建一个创世块:

现在,我们可以实现一个函数来创建有创世块的区块链:

来检查一个我们的区块链是否如期工作:

输出:

总结

我们创建了一个非常简单的区块链原型:它仅仅是一个数组构成的一系列区块,每个块都与前一个块相关联。真实的区块链要比这复杂得多。在我们的区块链中,加入新的块非常简单,而且很快,但是在真实的区块链中,加入新的块需要很多工作:你必须要经过十分繁重的计算(这个机制叫做工作量证明),来获得添加一个新块的权力。并且,区块链是一个没有单一决策者的分布式数据库。因此,一个新的块必须要被 络的其他参与者确认和同意(这个机制叫做共识(consensus))。还有一点,我们的区块链还没有任何的交易!

在接下来的文章的我们将会一一覆盖这些特性。


  1. 区块哈希算法:https://en.bitcoin.it/wiki/Block_hashing_algorithm

 

Part 2: 工作量证明

在 前面一文 中,我们构造了一个非常简单的数据结构,这个数据结构也是整个区块链数据库的核心。目前所完成的区块链原型,已经可以通过链式关系把区块相互关联起来:每个块都被连接到前一个块。

工作量证明

区块链的一个关键点就是,一个人必须经过一系列困难的工作,才能将数据放入到区块链中。正是这种困难的工作,才使得区块链是安全和一致的。此外,完成这个工作的人也会获得奖励(这也就是通过挖矿获得币)。

这个机制与生活的一个现象非常类似:一个人必须通过努力工作,才能够获得回 或者奖励,用以支撑他们的生活。在区块链中,是通过 络中的参与者(矿工)不断的工作来支撑整个 络,也就是矿工不断地向区块链中加入新块,然后获得相应的奖励。作为他们努力工作的结果,新生成的区块就能够被安全地被加入到区块链中,这种机制维护了整个区块链数据库的稳定性。值得注意的是,完成了这个工作的人必须要证明这一点,他必须要证明确实是他完成了这些工作。

整个 “努力工作并进行证明” 的机制,就叫做工作量证明(proof-of-work)。要想完成工作非常地不容易,因为这需要大量的计算能力:即便是高性能计算机,也无法在短时间内快速完成。此外,这个工作的困难度会随着时间不断增长,以保持每个小时大概出 6 个新块的速度。在比特币中,这个工作的目的是为了找到一个块的哈希,同时这个哈希满足了一些必要条件。这个哈希,也就充当了证明的角色。因此,寻求证明(寻找有效哈希),就是实际要做的事情。

哈希计算

在本节中,我们会讨论哈希计算。如果你已经熟悉了这个概念,可以跳过这一节。

获得指定数据的一个哈希值的过程,就叫做哈希计算。一个哈希,就是对所计算数据的一个唯一的表示。一个哈希函数输入任意大小的数据,输出一个固定大小的哈希值。下面是哈希的几个关键特性:

  1. 无法从一个哈希值恢复原始数据。也就是说,哈希并不是加密。
  2. 对于特定的数据,只能有一个哈希,并且这个哈希是唯一的。
  3. 即使是仅仅改变输入数据中的一个字节,也会导致输出一个完全不同的哈希。

在区块链中,哈希被用于保证一个块的一致性。哈希算法的输入数据包含了前一个块的哈希,因此使得不太可能(或者,至少很困难)去修改链中的一个块:因为如果一个人想要修改前面一个块的哈希,那么他必须要重新计算这个块以及后面所有块的哈希。

Hashcash

比特币使用 Hashcash ,一个最初用来防止垃圾邮件的工作量证明算法。它可以被分解为以下步骤:

  1. 取一些公开的数据(比如,如果是 email 的话,它可以是接收者的邮件地址;在比特币中,它是区块头)
  2. 给这个公开数据添加一个计数器。计数器默认从 0 开始
  3. 将 data(数据) 和 counter(计数器) 组合到一起,获得一个哈希
  4. 检查哈希是否符合一定的条件: 1.如果符合条件,结束 2.如果不符合,增加计数器,重复步骤 3-4

因此,这是一个暴力算法:改变计数器,计算一个新的哈希,检查,增加计数器,计算一个哈希,检查,如此反复。这也是为什么说它是在计算上是非常昂贵的,因为这一步需要如此反复不断地计算和检查。

现在,让我们来仔细看一下一个哈希要满足的必要条件。在原始的 Hashcash 实现中,它的要求是 “一个哈希的前 20 位必须是 0”。在比特币中,这个要求会随着时间而不断变化。因为按照设计,必须保证每 10 分钟生成一个块,而不论计算能力会随着时间增长,或者是会有越来越多的矿工进入 络,所以需要动态调整这个必要条件。

为了阐释这一算法,我从前一个例子(“I like donuts”)中取得数据,并且找到了一个前 3 个字节是全是 0 的哈希。

ca07ca 是计数器的 16 进制值,十进制的话是 13240266.

实现

好了,完成了理论层面,来开始写代码吧!首先,定义挖矿的难度值:

在比特币中,当一个块被挖出来以后,“target bits” 代表了区块头里存储的难度。这里的 24 指的是算出来的哈希前 24 位必须是 0,用 16 进制表示化的话,就是前 6 位必须是 0,这一点可以在最后的输出可以看出来。目前不会实现一个动态调整目标的算法,所以将难度定义为一个全局的常量即可。

24 其实是一个可以任意取的数字,目的是要有一个目标(target)而已,这个目标占据不到 256 位的内存空间。同时,我们想要有足够的差异性,但是又不至于大的过分,因为差异性越大,就越难找到一个合适的哈希。

这里,我们构造了 ProofOfWork 结构,里面存储了指向一个块和一个目标的指针。“目标” ,也就是前一节中所描述的必要条件。这里使用了一个 大 整数,我们将哈希与目标进行比较:先把一个哈希转换成一个大整数,然后检测它是否小于目标。

在** NewProofOfWork** 函数中,我们将** big.Int** 初始化为 1,然后左移 位。256 是一个 SHA-256 哈希的位数,我们将要使用的是 SHA-256 哈希算法。target(目标) 的 16 进制形式为:

它在内存上占据了 29 个字节。下面是与前面例子哈希的形式化比较:

第一个哈希(基于 “I like donuts” 计算)比目标要大,因此它并不是一个有效的工作量证明。第二个哈希(基于 “I like donutsca07ca” 计算)比目标要小,所以是一个有效的证明。

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2019年4月9日
下一篇 2019年4月9日

相关推荐