风筝实验——富兰克林将系着钥匙的风筝用金属线放到云层中,闪电击中钥匙,顺着金属线被富兰克林的手感知到。
到了1820年,丹麦人汉斯·奥斯特(Hans Christian Oersted)发现了电流的磁效应,重新建立了电与磁之间的联系。
1821年,英国人迈克尔·法拉第(Michael Faraday)发明了电动机。 10年后,1831年,他又发现了电磁感应定律,并且制造出世界上第一台能产生持续电流的发电机。
莫尔斯和他的电 机
有线电 的出现,具有划时代的意义——它让人类获得了一种全新的信息传递方式,这种方式“看不见”、“摸不着”、“听不到”,完全不同于以往的信件、旗语、 角、烽火。
1865年,英国人詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)提出了麦克斯韦方程组,建立了经典电动力学,并且预言了电磁波的存在。
1876年,美国人亚历山大·贝尔(Alexander Bell)申请了 电话专利 ,成为了电话之父。 虽然真正的电话之父应该是安东尼奥·穆齐(Antonio Meucci),但他因为过于贫穷,无钱申请专利,导致被贝尔捡漏。
无线电之父——伽利尔摩·马可尼
从此刻起,人类正式推开了无线通信时代的大门。
█ 蛰伏期:等待,耐心的等待
在此后的很长一段时间里,有线通信和无线通信都在各自的轨道上发展,相互间并没有走得很近。
先来看看有线通信。
在电话被发明之后,人们的声音可以在电线上传播。 其实,就是声信 转换成电信 ,电信 通过电线传播,最后电信 再转换回声信 。 对于通信 络来说,要解决的主要问题,就是如何布设和接续这些电线。
话务员和人工交换机
随着用户的增加,电话 络变得越来越庞大。 电话线路从几百条变成几千条、几万条。
A.B.史端乔,Almon Brown Strowger
他发现,打到自己店里的生意电话,总会被话务员转接到另一家殡仪馆。 后来才知道,原来当地话务员是那家殡仪馆老板的堂弟。 于是,他很生气,发誓一定要发明一个不需要人工操作的交换机。
结果,他还真的做到了。
他在自己的车库里,制作了世界上第一台 步进制电话交换机 。
纵横制接线器
这种接线器,将过去的滑动式改成了点触式,从而减少了磨损,提高了使用寿命。
在“纵横连接器”的基础上,1926年,世界上第一个大型 纵横制自动电话交换机 在瑞典松兹瓦尔市投入使用。 到了1938年,美国开通了1 纵横制自动电话交换系统。 紧接着,法国、日本等国家也相继生产和使用该类系统。
从此,人类正式进入纵横制交换机的时代。 到20世纪 50年代,纵横制交换系统已经非常成熟和完善。
世界上第一个晶体管
晶体管的诞生,掀起了微电子革命的浪潮,也为后来集成电路的降生吹响了 角。
随着半导体技术和电子技术飞速发展,人们开始考虑,在电话交换机中引入 电子技术 。
由于当时电子元件的性能还无法满足要求,所以出现了电子和传统机械结合的交换机技术,被称为“半电子交换机”、“准电子交换机”。
后来,微电子技术和数字电路技术进一步发展成熟,终于有了“ 全电子交换机 ”。
1965年,美国贝尔成功生产了世界上第一台商用 存储程式控制交换机 (也就是“ 程控交换机 ”),型 为No.1 ESS(Electronic Switching System)。
NEC程控交换机
它以预先编好的程序来控制交换机的接续动作,优点非常明显: 接续速度快、功能多、效率高、声音清晰、质量可靠、容量大。
在进入80年代之前,我们先停一停。 我们回头再看一下, 无线通信的发展脚步 。
在马可尼发明无线电 之后的很长一段时间,无线通信都处于单向通信(单工通信)的状态。
世界上第一个广播电台
战争是高新技术的催化剂,通信技术也是如此。
二战时期,摩托罗拉公司(创立于1928年)开发出了一款跨时代的产品——SCR-300军用步话机,实现了距离可达12.9公里的远距离无线通信。
到了60年代,以摩托罗拉和AT&T为代表的科技公司,开始重新对研发移动电话产生兴趣。
步入70年代,终于迎来了无线通信技术的大爆发。
1973年4月的一天,一名男子站在纽约街头,掏出一个约有两块砖头那么大的设备,并对它说话,兴奋得手舞足蹈,引得路人纷纷侧目。
这个人,就是手机的发明者,马丁库帕。 他是摩托罗拉公司的工程师。
1G使用的是模拟通信技术,保密性差,容量低,通话质量也不行,信 不稳定。
80年代后期,随着大规模集成电路、微处理器与数字信 技术的日趋成熟,人们开始研究模拟通信向数字通信的转型。
于是,很快,我们就迎来了 2G时代 。
2G是数字移动通信技术的闪亮登场。
刚起步时,为了摆脱1G时代通信标准被美国垄断的局面,欧洲打算自己搞一个通信标准。 于是,1982年,欧洲邮电管理委员会成立了“移动专家组”,专门负责通信标准的研究。
这个 “移动专家组”,法语缩写是 GroupeSpécialMobile,后来这一缩写的含义被改为“全球移动通信系统”(Global System for Mobilecommunications),也就是大名鼎鼎的GSM。
位于高通公司总部的“专利墙”
在2G崛起之前的这一时期,还有一件重要的事情发生,那就是 互联 的爆发 。
80年代,计算机技术日益成熟,计算机 络技术也随之得到蓬勃发展,相关基础理论逐渐完善,并最终催生出强大的互联 (Internet)。
互联 崛起之后,计算机之间的数据通信需求呈爆炸式增长。
分组交换业务迅猛增长带来的直接后果,就是对信道容量的巨大冲击。
前面我们说到,70年代,有线通信发展到 程控交换 。 程控交换,说白了还是以语音业务为主要目的的电路交换机。 承载方式也是TDM电路(你就把它理解为电缆吧)为主,无法很好地满足分组交换业务的需求。
于是,引入了以太 ,引入了 线。 线是传输IP分组 文的最合适传输介质。
从名字也看出来了,三大技术都是和CDMA有密切的关系,这也让高通赚得盆满钵满。
3G 络的速率相比2.5G,有了大幅的提升,达到了14.4Mbps(WCDMA理论下行速率)。 已经可以满足基本的多媒体业务需求。
与此同时,苹果公司的乔布斯,恰到好处地推出了iPhone。 以iPhone为代表的智能手机,彻底改变了我们的生活。
1966年,华裔科学家高锟开创性地提出,光导纤维可以在通信上应用,从此打开了光通信世界的大门。
●精选 | ST工具、下载编程工具
●精选 | 嵌入式软件设计与开发
我的视频 :

点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!