信息检索技术
概念介绍
全文检索是一种将文件中所有文本与检索项匹配的文字资料检索方法。全文检索系统是按照全文检索理论建立起来的用于提供全文检索服务的软件系统。
全文检索主要对非结构化数据的数据检索。
结构化数据和非结构化数据
结构化数据:指具有固定格式或有限长度的数据,如数据库,元数据等。
非结构化数据:指不定长或无固定格式的数据,如邮件,word文档, 页等。
当然有的地方还会提到第三种,半结构化数据,如XML,HTML等,当根据需要可按结构化数据来处理,也可抽取出纯文本按非结构化数据来处理。
注:非结构化数据另外一种叫法叫:全文数据。
数据搜索
按照数据的分类,搜索也分为两种:
对结构化数据的搜索:如对数据库的搜索,用SQL语句。再如对元数据的搜索,如利用windows搜索对文件名,类型,修改时间进行搜索等。
对非结构化数据的搜索:如利用windows的搜索也可以搜索文件内容,Linux下的grep命令,再如用Google和百度可以搜索大量内容数据。
我们重点来探讨对非结构化数据的搜索。
顺序扫描法
所谓顺序扫描,比如要找内容包含某一个字符串的文件,就是一个文档一个文档的看,对于每一个文档,从头看到尾,如果此文档包含此字符串,则此文档为我们要找的文件,接着看下一个文件,直到扫描完所有的文件。
比如:利用windows的搜索也可以搜索文件内容,如果做全盘文件的检索,速度会相当的慢,因为硬盘上的数据很大。Linux下的grep命令也是这一种方式。
大家可能觉得这种方法比较原始,但对于小数据量的文件,这种方法还是最直接,最方便的。但是对于大量的文件,这种方法就很慢了。
有人可能会说,对非结构化数据顺序扫描很慢,对结构化数据的搜索却相对较快(由于结构化数据有一定的结构可以采取一定的搜索算法加快速度),那么把我们的非结构化数据想办法弄得有一定结构不就行了吗/p>
这种想法很天然,却构成了全文检索的基本思路,也即将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。
这部分从非结构化数据中提取出的然后重新组织的信息,我们称之索引。
索引与全文检索
正向索引
已知文件,欲检索数据,这是建立:文件——数据的映射,称为正向索引,比如下图:
比如我们要寻找既包含字符串“lucene”又包含字符串“solr”的文档,我们只需要以下几步:
- 取出包含字符串“lucene”的文档链表。
- 取出包含字符串“solr”的文档链表。
- 计算权重(Term weight)的过程。
影响一个词(Term)在一篇文档中的重要性主要有两个因素:
Term Frequency (tf):即此Term在此文档中出现了多少次。tf 越大说明越重要。
Document Frequency (df):即有多少文档包含次Term。df 越大说明越不重要。
搜索结果排名
问题的引出
请思考这样一个问题:
如果仅仅只有一个或十个文档包含我们查询的字符串,我们的确找到了。然而如果结果有一千个,甚至成千上万个呢个又是您最想要的文件呢/p>
如何计算文档和查询语句的相关性呢br> 处理思路:我们把查询语句看作一片短小的文档,对文档与文档之间的相关性(relevance)进行打分(scoring),分数高的相关性好,就应该排在前面。
首先,一个文档有很多词(Term)组成,如search, lucene, full-text, this, a, what等。
其次对于文档之间的关系,不同的Term重要性不同,比如针对一篇关于Lucene的技术文档,search, Lucene, full-text就相对重要一些,this, a , what可能相对不重要一些。所以如果两篇文档都包含search, Lucene,fulltext,这两篇文档的相关性好一些,此外就算一篇文档包含this, a, what,另一篇文档不包含this, a, what,也不能影响两篇文档的相关性。
因而判断文档之间的关系,首先找出哪些词(Term)对文档之间的关系最重要,如search, Lucene, fulltext。然后判断这些词(Term)之间的关系。
找出词(Term)对文档的重要性的过程称为计算词的权重(Term weight)的过程。
计算词的权重(term weight)有两个参数,第一个是词(Term),第二个是文档(Document)。
词的权重(Term weight)表示此词(Term)在此文档中的重要程度,越重要的词(Term)有越大的权重(Term weight),因而在计算文档之间的相关性中将发挥更大的作用。
向量空间模型算法(Vector Space Model)
概念介绍
向量空间模型(VSM:Vector Space Model)由Salton等人于20世纪70年代提出,并成功地应用于文本检索系统。
VSM概念简单,把对文本内容的处理简化为向量空间中的向量运算,并且它以空间上的相似度表达语义的相似度,直观易懂。当文档被表示为文档空间的向量,就可以通过计算向量之间的相似性来度量文档间的相似性。文本处理中最常用的相似性度量方式是余弦距离。
M个无序特征项ti,词根/词/短语/其他每个文档dj可以用特征项向量来表示(a1j,a2j,…,aMj)权重计算,N个训练文档AM*N= (aij) 文档相似度比较
向量空间模型 (或词组向量模型) 是一个应用于信息过滤,信息撷取,索引以及评估相关性的代数模型。
算法原理
我们来看一下模型公式:
Lucene介绍
他还有另外一个称 ,就是Hadoop之父。
Lucene 创建索引
准备工作
在pom.xml文件里引入Lucence的依赖jar包
pom.xml配置:
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!