类加载过程
加载(loading)
引导类加载器
扩展类加载器
系统类加载器
链接
验证(Verify)
准备(Perpare)
解析(Resolve)
初始化(Initialization)
类加载器
引导类加载器
扩展类加载器(ExtClassLoader)
系统自定义加载器(AppClassLoader)
自定义加载器
引导类加载器(BootStrap ClassLoader)
扩展类加载器(ExtClassLoader)
系统自定义加载器(AppClassLoader)
自定义加载器
ClassLoader
双亲委派机制
工作原理
- 如果一个类加载器收到了类加载请求,它并不会自己先去加载,而是把这个请求委托给父类的加载器去执行;
- 如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,请求最终将到达顶层的启动类加载器;
- 如果父类加载器可以完成类加载任务,就成功返回,倘若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载,这就是双亲委派模式。
优势
- 避免类的重复加载
- 保护程序安全,防止核心 API 被随意篡改
- 自定义类:java.lang.String
- 自定义类:java.lang.xxx( 错:阻止创建 java.lang 开头的类)
沙箱安全机制
其它
如何判断两个 class 对象是否相同
1.在 JVM 中表示两个 class 对象是否为同一个类存在两个必要条件: – 类的完整类名必须一致,包括包名。 – 加载这个类的 ClassLoader(指 ClassLoader 实例对象)必须相同。
3.JVM 必须知道一个类型是由启动加载器加载的还是由用户类加载器加载的。如果一个类型是由用户类加载器加载的,那么 JVM 会将这个类加载器的一个引用作为类型信息的一部分保存在方法区中。当解析一个类型到另一个类型的引用的时候,JVM 需要保证这两个类型的类加载器是相同的。
类的主动使用和被动使用
Java 程序对类的使用方式分为:主动使用和被动使用。 主动使用,又分为七种情况:
- 创建类的实例
- 访问某个类或接口的静态变量,或者对该静态变量赋值
- 调用类的静态方法
- 反射(比如:Class.forName(“com.atguigu.Test”))
- 初始化一个类的子类
- Java 虚拟机启动时被标明为启动类的类
- JDK 7 开始提供的动态语言支持:
- java.lang.invoke.MethodHandle 实例的解析结果 REF getStatic、REF putStatic、REF invokeStatic 句柄对应的类没有初始化,则初始化
除了以上七种情况,其他使用 Java 类的方式都被看作是对类的被动使用,都不会导致类的初始化。
运行时数据区
当我们通过前面的:类的加载-> 验证 -> 准备 -> 解析 -> 初始化 这几个阶段完成后,就会用到执行引擎对我们的类进行使用,同时执行引擎将会使用到我们运行时数据区
内存是非常重要的系统资源,是硬盘和 CPU 的中间仓库及桥梁,承载着操作系统和应用程序的实时运行 JVM 内存布局规定了 Java 在运行过程中内存申请、分配、管理的策略,保证了 JVM 的高效稳定运行。不同的 JVM 对于内存的划分方式和管理机制存在着部分差异。结合 JVM 虚拟机规范,来探讨一下经典的 JVM 内存布局。
Java 虚拟机定义了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机启动而创建,随着虚拟机退出而销毁。另外一些则是与线程一一对应的,这些与线程对应的数据区域会随着线程开始和结束而创建和销毁。
- 每个线程:独立包括程序计数器、栈、本地栈。
- 线程间共享:堆、堆外内存(永久代或元空间、代码缓存)
每个 JVM 只有一个 Runtime 实例。即为运行时环境。
线程
-
线程是一个程序里的运行单元。JVM 允许一个应用有多个线程并行的执行。
-
在 HotSpot JVM 里,每个线程都与操作系统的本地线程直接映射。
-
当一个 Java 线程准备好执行以后,此时一个操作系统的本地线程也同时创建。Java 线程执行终止后,本地线程也会回收。
-
操作系统负责所有线程的安排调度到任何一个可用的 CPU 上。一旦本地线程初始化成功,它就会调用 Java 线程中的 run() 方法。
JVM 系统线程
如果你使用 jconsole 或者是任何一个调试工具,都能看到在后台有许多线程在运行。这些后台线程不包括调用public static void main(String[]) 的 main 线程以及所有这个 main 线程自己创建的线程。 这些主要的后台系统线程在 HotSpot JVM 里主要是以下几个:
- 虚拟机线程:这种线程的操作是需要 JVM 达到安全点才会出现。这些操作必须在不同的线程中发生的原因是他们都需要 JVM 达到安全点,这样堆才不会变化。这种线程的执行类型包括 “Stop-The-World” 的垃圾收集,线程栈收集,线程挂起以及偏向锁撤销。
- 周期任务线程:这种线程是时间周期事件的体现(比如中断),他们一般用于周期性操作的调度执行。
- GC 线程:这种线程对在 JVM 里不同种类的垃圾收集行为提供了支持。
- 编译线程:这种线程在运行时会将字节码编译成到本地代码。
- 信 调度线程:这种线程接收信 并发送给 JVM,在它内部通过调用适当的方法进行处理。
程序计数器(PC寄存器)
PC Register 介绍
JVM 中的程序计数寄存器(Program Counter Register)中,Register 的命名源于 CPU 的寄存器,寄存器存储指令相关的现场信息。CPU 只有把数据装载到寄存器才能够运行。这里,并非是广义上所指的物理寄存器,或许将其翻译为 PC 计数器(或指令计数器)会更加贴切(也称为程序钩子),并且也不容易引起一些不必要的误会。JVM 中的 PC 寄存器是对物理 PC 寄存器的一种抽象模拟
作用:
PC 寄存器用来存储指向下一条指令的地址,也即将要执行的指令代码。由执行引擎读取下一条指令。
- 它是一块很小的内存空间,几乎可以忽略不记。也是运行速度最快的存储区域。
- 在 JVM 规范中,每个线程都有它自己的程序计数器,是线程私有的,生命周期与线程的生命周期保持一致。
- 任何时间一个线程都只有一个方法在执行,也就是所谓的当前方法。程序计数器会存储当前线程正在执行的 Java 方法的 JVM 指令地址;或者,如果是在执行 native 方法,则是未指定值(undefined)。
- 它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。
- 字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令。
- 它是唯一一个在 Java 虚拟机规范中没有规定任何 OutOfMemoryError 情况的区域。
两个常见问题
使用 PC 寄存器存储字节码指令地址有什么用呢/h3>
因为 CPU 需要不停的切换各个线程,这时候切换回来以后,就得知道接着从哪开始继续执行。
JVM 的字节码解释器就需要通过改变 PC 寄存器的值来明确下一条应该执行什么样的字节码指令。
PC 寄存器为什么被设定为私有的/h3>
? 1. 我们都知道所谓的多线程在一个特定的时间段内只会执行其中某一个线程的方法,CPU 会不停地做任务切换,这样必然导致经常中断或恢复,如何保证分毫无差呢了能够准确地记录各个线程正在执行的当前字节码指令地址,最好的办法自然是为每一个线程都分配一个 PC 寄存器,这样一来各个线程之间便可以进行独立计算,从而不会出现相互干扰的情况。
? 2.由于 CPU 时间片轮限制,众多线程在并发执行过程中,任何一个确定的时刻,一个处理器或者多核处理器中的一个内核,只会执行某个线程中的一条指令。
? 3.这样必然导致经常中断或恢复,如何保证分毫无差呢个线程在创建后,都会产生自己的程序计数器和栈帧,程序计数器在各个线程之间互不影响。
CPU 时间片
1.CPU 时间片即 CPU 分配给各个程序的时间,每个线程被分配一个时间段,称作它的时间片。
2.在宏观上:我们可以同时打开多个应用程序,每个程序并行不悖,同时运行。
3.但在微观上:由于只有一个 CPU ,一次只能处理程序要求的一部分,如何处理公平,一种方法就是引入时间片,每个程序轮流执行。
虚拟机栈
虚拟机栈概述
由于跨平台性的设计,Java 的指令都是根据栈来设计的。不同平台 CPU 架构不同,所以不能设计为基于寄存器的。 优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同样的功能需要更多的指令。
有不少 Java 开发人员一提到 Java 内存结构,就会非常粗粒度地将 JVM 中的内存区理解为仅有 Java 堆(heap)和 Java 栈(stack)什么/p>
首先栈是运行时的单位,而堆是存储的单位
- 栈解决程序的运行问题,即程序如何执行,或者说如何处理数据。
- 堆解决的是数据存储的问题,即数据怎么放,放哪里
Java虚拟机栈是什么
Java 虚拟机栈(Java Virtual Machine Stack),早期也叫 Java 栈。每个线程在创建时都会创建一个虚拟机栈,其内部保存一个个的栈帧(Stack Frame),对应着一次次的 Java 方法调用。
- 是线程私有的
生命周期
生命周期和线程一致,也就是线程结束了,该虚拟机栈也销毁了
作用
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!