文章目录
-
-
-
- 相关资源
-
- 教程特点
- 读者&阅读条件
-
- Pillow是什么
-
- Pillow版本支持
- Pillow库特点
-
-
- 1) 支持广泛的文件格式
- 2) 提供了丰富的功能
- 3) 配合GUI工具使用
-
- Pillow的下载与安装
-
- pip包管理器安装
- 二进制包安装
- Anaconda安装
- Pillow创建Image对象
-
- open()
- new()
- Pillow Image对象属性
-
-
-
- 1) size:查看图像的尺寸
- 2) format:查看图片的格式
- 3) readonly:图片是否为只读
- 4) info:查看图片相关信息
- 5) mode:图像模式
-
-
- Pillow图片格式转换
-
- save()
- convert()+save()
- Pillow图像缩放操作
-
- 创建缩略图
- 批量修改图片尺寸
- Pillow图像分离与合并
-
- split()
- merge()
- 扩展知识:blend() 混合图片
- Pillow图像裁剪、复制、粘贴操作
-
- 图像裁剪操作
- 图像拷贝和粘贴
- Pillow图像几何变换
-
- transpose()翻转操作
- rotate()任意角度旋转
- transform()图像变换
- Pillow图像降噪处理
-
- 模糊处理
- 轮廓图
- 边缘检测
- 浮雕图
- 平滑图像
- Pillow图像颜色处理
-
- 颜色命名
- getrgb()方法
- getcolor()
- Pillow为图片添加水印
-
- ImageDraw
- ImageFont
- 添加图片水印
- Pillow和ndarray数组
-
- ndarray数组创建图像
- 图像转化为ndarray数组
- Pillow生成GIF动态图
Pillow 库(有时也称 PIL 库) 是 Python 图像处理的基础库,它是一个免费开源的第三方库,由一群 Python 区志愿者使用 Python 语言开发而成(主要贡献者:Alex Clark)。
Pillow 提供了非常强大的图像处理功能,它能够很轻松地完成一些图像处理任务。与 Python 的其他图像处理库相比(OpenCV、Scikit-image 等),Pillow 库简单易用,非常适合初学者学习。
Pillow 库提供了非常丰富的功能,主要有以下几点:
- Pillow 库能够很轻松的读取和保存各种格式的图片;
- Pillow 库提供了简洁易用的 API 接口,可以让您轻松地完成许多图像处理任务;
- Pillow 库能够配合 GUI(图形用户界面) 软件包 Tkinter 一起使用;
- Pillow 库中的 Image 对象能够与 NumPy ndarray 数组实现相互转换。
丰富功能的实现得益于 Pillow 提供了众多的模块。在 Pillow 库中有二十多个模块,比如 Image 图像处理模块、ImageFont 添加文本模块、ImageColor 颜色处理模块、ImageDraw 绘图模块等等,每个模块各自实现了不同的功能,同时模块之间又可以互相配合。
相关资源
- Python Pillow 官方文档:https://pillow.readthedocs.io/en/latest/
- 本套教程的图片资源下载:https://pan.baidu.com/s/17mhdGCTuKMPS5RuAgbtv3A(提取码:n1v2)
教程特点
本套教程的初衷是尽快让初学者入门,因此更偏重于基础知识。在教程中,我们详细讲解了如何使用 Pillow 库的 Image 模块完成一些图像的处理操作,比如调整图像大小、图像的拷贝、粘贴、裁剪等基础操作,通过这些内容的学习,让您掌握图像处理的基本方法。对于 Pillow 的进阶知识,我们讲解了如何使用 Pillow 为图片添加水印、批量处理图片以及生成 GIF 动态图等。
在创作教程的过程中,我们尽量从初学者的角度来讲解 Pillow 库的相关知识,使教程通俗易懂、易学、易用。本套教程采用了“知识讲解 + 实例演示”的方式,避免了学习过程中的“枯燥和乏味”。学习完本教程后,您可以使用 Pillow 库完成一些简单的图像处理操作。
读者&阅读条件
本套 Pillow 教程适合有一定 Python 编程基础的人员学习,如果您已经掌握 Python 基础知识,那可以直接阅读本教程,否则建议您提前阅读《Python基础教程》。通过本套教程的学习,您将初步掌握图像处理的相关知识,将它作为学习图像处理的第一套教程,是一个非常不错的选择。
Pillow是什么
PIL( Python Imaging Library)是 Python 的第三方图像处理库,由于其功能丰富,API 简洁易用,因此深受好评。
自 2011 年以来,由于 PIL 库更新缓慢,目前仅支持 Python 2.7 版本,这明显无法满足 Python3 版本的使用需求。于是一群 Python 区的志愿者(主要贡献者:Alex Clark 和 Contributors)在 PIL 库的基础上开发了一个支持 Python3 版本的图像处理库,它就是 Pillow。
Pillow 不仅是 PIL 库的“复制版”,而且它又在 PIL 库的基础上增加了许多新的特性。Pillow 发展至今,已经成为了比 PIL 更具活力的图像处理库。
Pillow 的初衷只是想作为 PIL 库的分支和补充,如今它已是“青出于蓝而胜于蓝”。
除了 PIL 和 Pillow 库之外,Python 还提供了一些其他图像处理库:
- Scikit-image:一款基于 scipy 科学计算的图像处理软件包,以数组的形式对图像进行处理;
- OpenCV:其实是一个 C++ 图像处理库,不过它提供了 Python 语言的接口。
Pillow 是 Python 中较为基础的图像处理库,主要用于图像的基本处理,比如裁剪图像、调整图像大小和图像颜色处理等。与 Pillow 相比,OpenCV 和 Scikit-image 的功能更为丰富,所以使用起来也更为复杂,主要应用于机器视觉、图像分析等领域,比如众所周知的“人脸识别”应用。
Pillow版本支持
Pillow 支持跨平台运行,比如 Windows、Linux、MacOS 等,其最新版本为 Pillow 8.3.2,该版本支持 Python 3.6 及以上的版本(推荐使用)。Pillow 与 Python 支持版本的对照表如下所示:
Python版本 | 3.10 | 3.9 | 3.8 | 3.7 | 3.6 | 3.5 | 2.7 |
---|---|---|---|---|---|---|---|
Pillow>=8.3.2 | 支持 | 支持 | 支持 | 支持 | 支持 | ||
Pillow8.0-8.3.1 | 支持 | 支持 | 支持 | 支持 | |||
Pillow7.0-7.2 | 支持 | 支持 | 支持 | 支持 | |||
Pillow6.2.1-6.22 | 支持 | 支持 | 支持 | 支持 | 支持 | ||
Pillow6…0-6.2.0 | 支持 | 支持 | 支持 | 支持 |
Pillow库特点
Pillow 库作为图像处理的常用库,主要有以下三大特点:
1) 支持广泛的文件格式
Pillow 支持广泛的图像格式,比如 “jpeg”,“png”,“bmp”,“gif”,“ppm”,“tiff” 等。同时,它也支持图像格式之间的相互转换。总之, Pillow 几乎能够处理任何格式的图像。
2) 提供了丰富的功能
Pillow 提供了丰富的图像处理功能,可概括为两个方面:
- 图像归档
- 图像处理
图像归档,包括创建缩略图、生成预览图像、图像批量处理等;而图像处理,则包括调整图像大小、裁剪图像、像素点处理、添加滤镜、图像颜色处理等。
3) 配合GUI工具使用
Pillow 库可以配合 Python GUI(图形用户界面)工具 Tkinter 一起使用。
除上述特点之外,Pillow 库还能实现一些较为复杂的图像处理操作,比如给图像添加水印、合成 GIF 动态效果图等等。
Pillow的下载与安装
Pillow 安装非常简单和方便,有三种安装途径,分别是:
- pip包管理器安装
- 二进制包安装
- Anaconda安装
下面对上述安装方式做简单介绍。
注意,PIL 库与 Pillow 库不允许在同一环境中共存,如果您之前安装了 PIL 库,请卸载后,再安装 Pillow。
pip包管理器安装
通过 Python 包管理器 pip 来安装 Pillow 是最简单、轻量级的一种安装方式,并且这种方法适用于任何平台。只需执行以下命令即可:
二进制包安装
通过 Python PyPi 第三方库官 (https://pypi.org/project/Pillow/#files)下载与平台系统相对应的版本,如下所示:
无论采用上述哪种方式都可以成功安装 Pillow。不过对于初学者来说,我们建议您使用第一种安装方式。
注意,本教程以 Windows 平台为例对 Pillow 库的相关知识进行讲解。
最后,在 CMD 命令行打开 Python 解释器交互环境,输入以下代码,验证 Pillow 是否安装成功。
如下所示,如果解释器没有返回错误,则证明已经安装成功。
new()
使用 Image 类提供的 new() 方法可以创建一个新的 Image 对象,语法格式如下:
参数说明如下:
- mode:图像模式,字符串参数,比如 RGB(真彩图像)、L(灰度图像)、CMYK(色彩图打印模式)等;
- size:图像大小,元组参数(width, height)代表图像的像素大小;
- color:图片颜色,默认值为 0 表示黑色,参数值支持(R,G,B)三元组数字格式、颜色的十六进制值以及颜色英文单词。
示例如下:
输出图像如下所示:
对图片的局部位置进行放大,示例如下:
图片的放大效果如下所示:
下面开始编写代码:
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!