Lingo求解线性规划案例1——生产计划问题

   凯鲁嘎吉 – 博客园

http://www.cnblogs.com/kailugaji/

说明:

Lingo版本:

因为每季度初的存贮量为上季度存贮量、生产量之和与上季度的需求量之差,又考虑到第四季度末存贮量为零,故有;

    x1-20=y2,    

    y2+x2-20=y3,

    y3+x3-30=y4,   

    y4+x4=10;

同时,每季度的生产量不能超过生产能力:xj≤aj;而工厂四个季度的总费用由每季的生产费用与存贮费用组成,于是得线性规划:

    minf=15.Ox1+O.2y2+14×2+O.2y3+15.3×3+O.2y4+14.8×4

    s.t.  x1-y2=20

                 y2+x2-y3=20

                 y3+x3-y4=30

                 y4+x4=10

                0≤x1≤30   0≤x2≤40

               0≤x3≤20   0≤x4≤10

               0≤yj    j=2,3,4

Lingo程序:

结果为:

(3)设第i季度生产而用于第j季度末交货的产品数量为xij吨。

根据合同要求,必须有:

x11=20,    

x12+x22=20,

x13+x23+x33=30,   

x14+x24+x34+x44=10。

又每季度生产而用于当季和以后各季交货的产品数不可能超过该季度工厂的生产能力,故应有。

  X11+x12+x13+x14≤30,

  x22+x23+x24≤40,    

  x33+x34≤20,

  x44≤10。

i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。

minf=15.0×11+15.2×12+15.4×13+15.6×14+14×22+14.2×23+14.4×24+15.3×33+15.5×34+14.8×44

 s.t. x11=20

       x12+x22=20

       x13+x23+x33=30

       x14+x24+x34+x44=10

       x11+x12+x13+x14≤30

       x22+x23+x24≤40

       x33+x34≤20

       x44≤10

       xij≥0,  i=1,…,4;j=1,…,4,j≥i。

Lingo程序为:

结果为:

 

相关资源:今目标软件(桌面今目标)09/26-专业指导文档类资源-CSDN文库

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2018年1月5日
下一篇 2018年1月5日

相关推荐