17届技术 告 | 杭电四轮点此一队

前瞻支架的选取我们尝试过很多方案,最后我们采用强度高、重量轻、可任意制作形状、加工简单、耐撞击的钢管配合轻质碳杆的支架方案,使得车子的转动惯量以回转轴过杆的中点并垂直于轴时为例,车子大概为长条形达到最小化,从而车子在转弯时更加迅速、灵敏。前瞻支架固定于舵机下部分,并通过碳纤杆拉伸固定于车身中部,形成了三角形结构,利于提高前瞻的稳定性,减小行进过程前瞻摇晃带来的影响。在调试车子过程中我们发现传统的“碳杆独立电感”的方案在高速撞击下易碎且不牢固,再经过我们的不断尝试后,最后选定了一体板的方案,如下图所示,经过实际检验稳定性与坚固程度大大提升,也更为轻巧。

最后讨论车子的闭环控制问题。我们采用龙邱线旋转编码器(—)为测速器,直接用编码器齿轮咬合车模主动轮的方法来获取车子的行驶速度,最后在程序中根据编码器采集回来的信 设计速度控制策略,实现车速的闭环控制。

杭电四轮电磁一队小车主体部分:

  • 1:底盘及附属部分。包括驱动电机、转向舵机、电池等;
  • 2:信 检测部分;
  • 3:编码器测速部分;
  • 4:单片机最小系统板,包括电源处理及检波;
  • 5:机械制作,传感器支架,红外传感器;
  • 6:干簧管及 OLED液晶屏。

2.1.2 主销内倾角

主销在汽车的横向平面内向内倾斜一个β角,即主销轴线与地面在汽车横向断面内的夹角,称为主销内倾角。主销内倾角β也有使车轮自动调整的作用。当转向轮在外力作用下发生偏转时,车轮就会在重力的作用下恢复到原来中间位置。另外,主销内倾还会使主轴线延长线道路面的交点的距离减少,同时转向时路面作用在转向轮的的阻力也减少,从而减少转向时驾驶员施加在转向盘的时,使车运行更轻便,同时也减少了由于路面不平而从转向轮输出到转向盘的力反馈。但主销内倾角不宜过大,否则在转向是车轮绕主销偏转的过程中,轮胎与路面间将产生较大的滑动,从而会增加轮胎与路面间的摩擦力,这也会使转向变得沉重,还将加速轮胎的磨损。调整方法如下图,通过旋转该结构进行角度调节。

2.1.5 前轮悬挂

简单来说,悬挂系统就是指由车身与轮胎间的弹簧组成的整个系统,悬挂强度以及悬挂行程直接决定了车辆面对颠簸路面时的通过性。但是当小车速度较高时,软悬挂也会带来很多问题。由于弹簧刚度小,导致车身摇晃,这在车辆前端较长较重的电磁车模来说,影响尤为明显。当加速行进时,底盘已经加速走了,前半车身部分还在仰头克服惯性;当减速时,底盘部分已经开始制动了,前半车身还在因为惯性而刹车点头,这就导致车辆行驶时出现一颠一颠的情况,不仅影响速度,还导致稳定性减弱。在转弯过程中,较软的悬架会有更多的倾侧和动态迟缓,导致重心偏移大,车身晃动大,更容易失控。考虑到我们的室内赛道是比较平整的,我们决定提高悬挂系统强度,使其在转向、加减速时反应更快,我们通过在车模原有悬挂弹簧下方加入垫片来解决,如图2.4示例所示:

2.3 传感器支架


电磁组磁场信 较为复杂,如果小车的前瞻较近则不利于小车的快速灵活转向如果前瞻较远,那么在赛道之间过近的情况下则容易出现判断错误使小车跑出赛道,致使比赛失败。在仔细研读第十七届的电磁组比赛细则之后,我们决定使用制作一体式传感器作为前瞻。

简单为小车运动建立一个模型。我们不妨将车体的运动看成平动,将车身看成一个质点系。车身本身是一个惯性系,但是由理论力学知识可以知道,以质点的相对速度或以其绝对速度计算质点系对于质心的动量矩,其结果是相等的。即:质点系相对于质心的动量矩等于质点系内各质点现对于质心平移参考系的动量对质心的矩的矢量和。换句话说,就是由于质心在动力学中的特殊性,我们可以将车身转向运动直接看随质点的平移以及绕质点的转动运动合成。因此,在分析转动惯量时我们可以将平移运动去掉,单纯看车身绕质点转动。根据转动惯量的定义:

由公式可知,当越大,也越大由公式可知,在一定的时间内,越大,则主动力提供的动量矩随之越大,即舵机输出的力矩也要更大才行。

通过以上的分析以及实际的不断测试,我们最终确立选用直接作为前瞻。优点在于电路简单、架构简单、质量轻、强度大、电磁干扰小。

2.4 舵机的安装


前置舵机安装直接关系到转向问题。如果舵机调整不到位,将很大程度上限制转向的角度和响应速度。

舵机的安装一般来说分为两种方式:一种是卧式安装,另外一种为立式安装。卧式安装为车模默认安装方式,但这样安装会使左右两边轮子连杆不等长,根据杠杆原理可知舵机对长连杆轮子用的力要大些,因此造成了舵机对左右两边转向响应时间不一样。另外由于卧式安装使连杆与水平面呈现一定角度,从力学知识可以知道在轮子转向获得的力只是舵机施加在连杆上力的一个水平方向上的分力。综合考虑,我们选择了舵机立式安装方式。舵机立式安装能够解决上述卧式安装的缺点,即连杆等长和连杆与水平面夹角小的问题。同时我们自己制作了舵机的连接件,而舵机安装高度则是经过了多次实践后确定。同时为了使舵机提供的力矩更大,转向更灵活,我们使得转向臂与舵机安装效果图如图 2.6所示。

2.6 差速调整


小车采用软件控制电机差速。合适的差速调整能够提高小车过弯速度,提高弯道性能。差速调整可以通过代码配合速度控制实现。

2.7 小结


机械结构部分的设计与调整对小车的行驶过程中的稳定性、转向的灵敏度有着极大的影响,一个优秀合理的机械结构能够大大提升车子行驶速度的上。机械结构的调整复杂、繁琐且需要大量的实践经验、实际试验以及对问题的分析改进,但不可否认的是,机械结构的调整也是必要的。

03 电路设计

===========

3.1 硬件电路整体架构设计


其中,得到。后来实验证明该传感器制作是合理的:

  1. 电感、电容的参数误差使得实际的谐振频率大概在左右:

  2. 由于比赛时信 频率有一定误差,所以我们的传感器的随机误差能增强车子的稳定性能:

后来我们专门制作了 PCB传感器前瞻。将传感器依次固定于相同点,将长直信 导线铺设于水平可滑动的导轨下方正中央。测试时用示波器观察各个传感器在导轨滑动过程中感应电压的幅值大小、左右对称性和谐振频率是否是在 20KHZ左右等性能。通过严格筛选,保证了传感器的一致性,为后来的信 采集奠定良好的匹配性、对称性基础。

在传感器布局上面我们想到的有两种。

第一种,采用一排电感。感应电动势最大的电感是最靠近导线的电感。但是此种方法的采集信息是离散的点,不利于精细的控制,无法做到流畅的过弯。如果增加电感的个数,那么将会使得整车重心靠前,转向负载很大,而且电感如果靠的十分近互感就是一个不得不考虑的问题。

第二种,使用少量的电感,直接使用感应电动势的模拟量的精确数值,精确的计算导线与传感器正中心的距离,具体计算方法依照毕奥-萨伐尔定理。

3.5 检波电路设计


另外我们还购买了漫反射激光传感器模块用于斑马线检测。

3.7 电机驱动电路设计


智能车速度是取得好的成绩的重要条件,由此电机驱动模块的重要性也就不言而喻。对于电机驱动电路,可有多种选择,像专用电机驱动芯片、等,但是以上芯片集成度高,导通内阻大,瞬间电流小,驱动效果差。因此我们选择用桥的全桥电路,才能够使得车及时刹住,减速入弯。另外,今年四轮电磁组,电机型 为。我们大概测试过启动或者堵转时电流可以达到适当的驱动频率下。开始我们采用英飞凌的集成半桥芯片构成桥来驱动电机,由于速度提升后电机耗电较大,发热严重,同时的成本也相对比较高。于是我们又开始艰难的尝试新的驱动方案。最终我们找到了搭的桥方案,采用内阻小的片来搭建的个桥使得单电机驱动问题彻底解决。

3.9 液晶按键电路设计


良好的人机交互可以减少调试的时间,能够大大提高调试的效率。显示模块我们采用屏,在所占空间小,显示非常清晰,而且功耗非常的低,所以与单片机系统使用同一路电源。按键我们为了节省空间和调试方便使用了一个五向开关和两个独立按键。由于电路较为简单,所以不在此列举。

3.12 主板设计


我们将上述模块功能中的电源管理、单片机最小系统板集成在了主板上。主板电路主要有电池接口、驱动板接口、红外接口、干簧管接口、检波电路板排线插座、舵机接口。另外,主板上还集成了包括稳压在内的所有电源电路。接口电路板的设计是要充分考虑与车模机械的配合,通过螺丝孔固定使结构稳定不改变,减少对运行的影响,同时采用高效优质的排线来完成远距离连接。主板如图所示:

4.3 程序的运行


开机后,对所有硬件进行初始化,完成之后,定时中断对电感采回来的数值进行分析控制。正式发车起跑后定时的采集感应得到的电压值,第一排的水平放置的传感器数值通过差比和的计算公式来得到导线与车子正中间的偏差(以下简称中心偏差),再通过算法将和采集到的中心偏差计算得出返回值,将计算得到的返回值输入方向环控制中,以此控制舵机,这样就完成了赛道上的基础循迹部分。同时根据赛道元素的不同列出状态机,单片机在查表获得当前车处于哪一种状态,根据状态机的规则给定电机的目标转速和一些特殊设定的舵机打角大小。在获取到目标转速后,通过速度环控制器迅速稳定的控制电机达到目标转速。

4.4 循迹子程序设计


路径识别包括对传感器的控制以及接受信 的处理。对传感器的控制就是定时采集电感数值,对采样结果的分析与判断。

我们利用PIT定时中断,中断处理中主要是对AD值进行一个连续序列的转换,并将数值进行存储。对数据的有效性判断比较简单,当传感器采回来的数值低于某一个特定阈值时直接判断为无效信息。

根据牛奥萨伐尔定理可知,如果赛道的电流不发生变化时,电感的感应电压通过后级电路后产生的直流电平正比于sinθ/(h2+l2),其中h为传感器距离导线的竖直距离,1为传感器距离导线的水平距离,θ为工字电感与导线的夹角。代入水平方向放置的四个电感数值就可以得到L和θ的具体数值。

倾斜放置的电感只是感性的估算。我们假象一下,比赛的赛道全部都是直道,那么当车身平行于导线时,第一排电感检测到的数值具有一定对称性,而当赛道前面出现弯道时第一排电感检测到的数值上会有较大的差别,将这个差值按照前面得到的θ进行软件放大得到一个前方赛道的变化率λ。

对于赛道元素的判断,我们经过不断地尝试与改进,最终确定了一套方案,包括通过两个放置在前瞻第二排的两颗与竖直方向夹角为45°的倾斜电感的变化趋势来判断环岛元素,通过干簧管检测车库旁边的磁铁来判断车库,通过红外传感器和电感辅助判断坡道元素以及多个电感联合判断的三叉元素,通过我们的实践发现,车辆对元素的判断和完成,很大程度上取决于车身的状态,如果车子状态稳定性出现了问题,那么对元素的识别判断和元素内的行驶轨迹都会有很大的影响,我们认为,这一次的赛道规则难度重点在于如何让元素的识别更加稳定。再加上多变的车辆状态,赛道陌生的赛场环境等,这些种种因素,更加考验小车程序的稳定性。

4.5 舵机打角子程序设计


关于舵机打角是建立在赛道分析的基础上的。上面得到的L和λ在接下来的控制中起到到关键的作用。我们分析了一下数据然后给出了一个经验公式:PWMDTY PRE=n_L+D_λ。其中参数系数是结合长期的调试结果的来的。其中二次项的系数越大贴黑线就越严格,一次项系数越大前瞻性就越高。但是一次项中的人计算的结果极其不精确,所以如果这一项占得比例太大会导致PWMDTY PRE数值的严重抖动。

4.6 速度控制子程序设计


速度控制部分是智能车除了舵机控制之外最为核心的内容。一个好的速度控制就是能十分准确的给出目标速度,电机对目标速度响应迅速,系统在干扰下速度依然稳定。

第一步要求有合理的速度决策。我们最终采用的速度决策方法是一个简单的分段两数。将赛道分为直道,小半径弯道,大半径弯道,丢失路线。而且这些速度可以根据赛道的具体情况通过按键在比赛准各时设定,其次差速的决策也是非常重要的,合理的差速能使得过弯更加流畅,速度更快,行驶的姿态也更好。

速度给定了之后执行也大有学问。直接列出速度和占空比的关系是一种十分不稳定的做法。这种做法受电池电量影响严重,而且只能适应某一种摩擦力的赛道。所以我们决定根据编码器反馈回来的数值进行换算。当编码器反馈回来的速度没有达到目标速度,那么正转占空比自加,反之则自滅。只要调节自加和自减的步进就能很好的对速度进行控制。

4.7 小结


软件部分是整个控制系统的核心。软件上主要有以下几个难点:

  1. 判断采样回来的赛道信息的有效性:

  2. 根据传感器信息判断车身状态:

  3. 如何使用各种传感器稳定流畅的完成元素的预识别:

对于车模来说,软件控制是核心,而对于软件来说,舵机打角和速度控制都不算是核心,真正的核心应该是舵机打角和速度控制的相互配合!

05 开发调试

===========

我们主要的开发环境是,版本是,可从公司相关 页上下载到主要使用的编码语言是语言。

5.1 现场调试


在基本程序完成之后还需要在现场对程序进行微调。所以我们自制了按键和OLED液晶模块。上场后我们的操作选手通过观察赛道情况、智能车循迹情况,然后根据观测结果通过按键对程序进行微调,包括:

1) 各种形式赛道的速度参数;

1控制的和等参数。此外,我们还用液晶显示各个电感的电压数值,方便临时通过主板上设置的可调电位器对信 采集后放大倍数的调整。当然所有的参数假使都已经有了较为合理的默认数值,这样可以极大的节省参数调整时间;

2控制的和等参数。我们将方向环控制的各个参数显示在液晶上,通过主板上设置的按键进行参数大小的增减;

为了测试在各种赛道上最为契合的参数,我们也花费了大量的时间和金钱在绘制跑道、训练参数经验上。虽然过程是曲折和辛苦的,但是看到小车在赛道上飞驰,再苦再累大家也心甘情愿。

5.2 调试中遇到的问题及解决过程


赛车在同样的赛道上走过的路都是不一样的,所以大家无论怎么考虑车的状态都是不够完全的,因此需要有一套完备的方案来解决对运行中的车辆进行实时监控。为了解决这个问题,我们组的后勤保障人员为组员准备了一套监控利器:与混合编程的上位机。工作原理是使用串口上传小车运行过程中的各种中间变量,然后提供一个接口给调试车的队员,队员自由编写函数进行一般的绘图或者数组操作,实现高级的行车参数监视和优化,使程序更加完善。

07 结 论

===========

本 告详细介绍了我们为第十七届全国大学生智能汽车大赛而准备的智能车系统方案:传感器制作、PID算法实现前轮舵机打角以及速度控制算法的实现。分析整个车模系统,我们在车模硬件及软件上都有许多改进与创新。系统上主要有以下特色:

1.个电感作为传感器,并使用其模拟量来探测赛道,精度更高。并使用红外等多种传感器进行元素的辅助判断,提高了判断的精度。

2. 传感器使用两排,除了计算车身与导线的距离以外,还计算了偏差角度,同时还能够在一定程度上增加一点前瞻。这对于电磁导航的智能车来说是难能可贵的。采用长前瞻设计,能更早的识别即将到来的赛道元素。

3. 主板采用可插拔的接口,方便电路的升级和局部维修,同时也降低了成本,同时 PCB全部用螺丝固定方便拆卸,板间全部用FPC线连接,方便更换且走线简洁。

4. 完全按照自己的需求定制了主板。主板集成度非常高,极大的减轻了重量和减小了体积,方便机械布局。

5. 增加了按键与液晶辅助调试电路。配合队员的临场发挥,增强了小车对赛道的适应能力。

6. 依照自己的需求定制了底盘。自制底盘更加轻便坚固,使整个小车灵活度更高,具有更好的赛道适应能力。

整个程序的控制部分只开启一个定时中断,控制步骤简单,容易调试。

但是横观我们车模的整个设计,我们觉得系统几个方面还有可以改进的地方:

1. 测速传感器虽然使用 512P/r,但是精度还是不够,尤其是对 5ms的反馈周期来说。当设定到一个很低的速度时会有严重的速度震荡:

2. 传感器改进。目前我们使用的传感器由于信 的白噪声,在人工差分的时候无法提高精度,所以有必要在后级电路上加上一级有源带通滤波。

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年9月21日
下一篇 2022年9月21日

相关推荐