计算机发展前沿技术——医学领域的人工智能

关键词:人工智能;医学;医学诊疗;智能技术;

1、人工智能在医学领域的优势[1]

        然而,人工智能不仅涉及一门技术或是一门学科,而是多种学科技术的融合。通过人工智能系统,我们可以查找、学习、设定计划;另一方面,我们还可以通过人工智能系统模拟出具体的智能行为,也包括各类医学科研研究过程。这项技术打破了限制医疗行业发展的障碍,即如何有效的探索和分析一些需要应用大量知识来解决的复杂性诊疗问题。现在,医学AI通过发展和完善使这些问题能被很好的解决,并且为我们提供了精准的治疗方案。

        对于获得的大量信息,人工智能系统可通过“深度学习”将其进行分类和归纳,还可进行直接提取和输出,减少了不必要的人工劳动。另外人工智能在医学中的应用还涉及药物挖掘、健康管理、疾病风险预测等,通过人工智能将各学科和各平台系统进行有机结合使医疗行业得到了更快的发展,这一发展体现在三个层面:对于临床医生而言,能够通过便捷的手段对患者的病情进行准确的解释和判断;通过简化工作流程和减少医疗失误的潜力来改善医疗系统;对于患者而言,智能系统使他们能安心其处理自身的健康数据,更好的促进人类健康。

        人工智能在医学领域的应用具有广阔的前景,包括机器学习与深度学习、知识图谱、自然语言处理、生物识别等。但在前期,由于系统性不完善、参与人员不足,造成相关研究往往只能取其中一个非常具体的层面切入,主要是限于背景、实力等因素,无法做到面面俱到,造成人工智能出现缓慢发展的状态。而在后期,计算机编写的程序是主要根据专家的设计原理和方法来模拟医生的思维过程来进行诊断的。其中医疗专家系统就是人工智能的体现,对于医生个人技术及水平问题导致的误诊、漏诊等情况,可以通过人工智能来弥补,经验不足的医师也能从人工智能系统中得到学习和提高。由此来看,人工智能是医生诊断疾病的理想工具,能够辅助医生处理较为复杂的医疗问题,获得更好的治疗效果。

        目前对于各种疾病的诊疗及手术均已形成规范和指南,但毕竟诊疗过程由人来完成,这导致不同医生之间的方法、水平存在较大差异,使用人工智能设定这一标准可大大提高操作的精确性和标准化程度。在临床中各类患者的情况并不相同,因此个体化的医疗设计方案可以提高医疗质量,即在证据充分的基础上,根据患者情况选择最适合的治疗方法,这种智能医疗方案能够给患者带来更好的诊疗体验。此外,我国人口众多,各级医院每年诊治数目庞大的患者,积累了世界上最多的临床医疗数据,针对我们的医疗数据分散、不标准、非结构化的缺陷,采用了医院标准化电子病历,建立安全有效的互联 数据库,将人工智能系统的价值充分的发挥出来。另外,现有的和即将产生的医学知识可能会逐渐超出人类思维的组织能力,但医学教育可以充分利用这一技术不断进行信息的获取和传递,有利于教育信息的不间断传播。

2、人工智能在医学领域的进展[2]

        在医疗工作中,图像对于医生诊断疾病具有重要的辅助作用,在这里主要通过列举人工智能在临床医学中的应用来反应其进展。人工智能与图像的结合大大提高了临床医生诊断疾病的准确率与效率,主要包括在影像、内镜以及病理检查中的应用。基于计算机视觉技术数学模型,人工智能收集、提取医学图像的原始像素并挖掘图像的有效特征,以此学习和模拟医生,这是一个由整体到部分再由部分到整体的复杂过程。

2.1影像检查

人工智能的运用能很好地协助医生根据影像学检查对患者进行疾病诊断。SUN-WOO等运用基于颅脑MR图像的计算机辅助诊断系统进行颅脑转移瘤诊断分析,影像医生的诊断敏感度从77.6%提升至81.9%,每例患者的诊断时间从114.4s减至72.1s;经验不足的影像医生诊断敏感度提高了约10%。MASOOD等运用基于胸部CT图像的计算机辅助诊断系统进行肺癌诊断分析,诊断平均准确率84.58%,对肺癌T1~T4分期鉴别的准确率77.89%~90.14%。BECKER等使用深度学习图像分析系统对143例诊断为乳腺癌或交界性病变的患者进行诊断分析,诊断准确率达82%,而经验丰富的放射科医师诊断准确率为79%~87%,两者相差不大。ARAMENDIA-VIDAURRETA等使用基于子宫附件超声图像的人工智能系统对附件肿物进行定性,准确率高达98.78%,灵敏度为98.50%,特异度为98.90%。由此可以看出,人工智能系统对于医生判读影像学结果有一定的辅助作用及价值,其不仅能提高医生对疾病诊断的敏感度,还能缩短医生阅片诊断的时间,既提升了准确率,也提高了效率。

2.2内镜检查

人工智能技术能通过摄取内镜所获得的图片中组织的微细纹理特征,进行深度学习,将内镜图像进行分类并预测诊断。MIYAGI等基于阴道镜图像,使用人工智能系统对330个图像进行分析,诊断判定准确率为0.823,敏感度为0.797,特异度为0.800。ITOH等开发的人工智能模型,基于胃镜图像进行幽门螺杆菌感染诊断,敏感度和特异度分别为86.7%、86.7%。GREGOR等基于结直肠镜检查运用人工智能实时定位并识别息肉,准确率达96%。人工智能通过对内镜图像进行深度学习能更好地协助临床医师诊断疾病。

2.3病理检查

在数字化病理学中,人工智能技术已应用于各种图像处理和判别任务中,包括侧重于对象识别问题的低级任务及更高级别的任务。随着数字化载玻片扫描技术在组织病理学实验室中应用的增多,数字化整体图像将逐步取代常规病理学工作中的载玻片,使用基于WSIS的深度学习系统可对组织进行识别,并对数据进行提取分析。人工智能系统能通过分析组织形状以确定组织图像的分化程度,通过分析淋巴细胞密度,肿瘤基质组成和核等指标,得到有用的预后数据。由于肿瘤免疫治疗的成功,近年来肿瘤微环境中的免疫细胞已经获得了大量的关注。因此,使用人工智能技术对肿瘤浸润免疫细胞进行定量分析成了数字组织病理学图像分析中的新兴主题之一。

3、人工智能在医学领域的应用[3]

1995年美国的HurleyMyers团队研发出Dxrcli-nician教学软件,该软件用人工智能技术训练学生的临床思维;我国在2009年引入该教学软件,但并未大规模投入使用;2006年人工智能技术中的BP神经 络算法被应用于教学质量监控,替代人工日常教学检测;2011年自适应教育平台Knewton与培生教育集团合作,通过提取学生的学习数据,提供个性化学习服务;上述应用说明,人工智能技术已经逐渐应用在高等教育领域。在我国,智能教育刚刚起步,人工智能技术在高等医学教育中的应用前景非常广泛。

3.1基于大数据的医学教育质量监测与评估

完善的教学质量监测与评估是提高教学质量的保障,基于大数据的教学质量监测与评估可以在日常教学过程中实时进行。通过分析大量的反馈信息进行阶段性与结果性评估,从而严格把控教学质量,以便为培养优秀的医疗人才提供保障。高等医学教育具有课程多、学制长、实践性强、专业综合化等特点。

大量的反馈信息有利于教学评估的常态化与全面化,将人工智能评估和传统师生互动有机结合,解决了学生临床实习地点分散、监控难度大的问题,加强及时调整教学模式和方式的落实。

3.2早期接触临床智能系统

当代的高等医学教育是以岗位胜任能力为培养重点的教育,早期接触临床课程是医学生从课堂到临床实习之间的过渡,目的是建立临床思维,提高临床能力。现在的早期接触临床课程多依赖于理论学习,不能真正将理论学习和临床实践有机结合。早期接触临床智能系统可通过机器学习模拟患者思维,支持人机交互,利用语音识别与合成技术形成虚拟患者,营造特定环境。在早期接触临床课程中,可让学生感受整个诊疗过程,提高与患者沟通的能力以及岗位责任;按专业的医师标准训练,为学生做出展示和评判;提高学生的专业自信心,成为解决临床问题能力和学习能力的重要工具。

3.3基于数据挖掘的适应性学习

医学专业学习课程包括基础和临床课程,以及医患沟通、心理学等人文类课程。除此之外,医学学习还需要实验及临床实践。在大量的学习任务之下,学生学习个体差异显著,适应性学习系统根据学生学习能力、教学模式等方面对学生个体进行评估,并制定个性化学习方案,使其从被动学习转变为自主学习与创新学习、探究式学习。大量的反馈信息可以缩小教师教授内容与学生吸收内容之间的差距,利用在线开放资源,教师可及时对学生加强指导,使其尽快适应学习环境。人工智能技术可以为学生提供个性化的服务及预测,达到尽快适应医学学习环境的目的。医学学习数据具有数量巨大、多样性的特点,在基于数据挖掘的适应性学习中,使用的主要技术包括数据的存储、数据挖掘、处理等,整体技术架构如图3所示。数据挖掘技术可以在大量的数据中筛选具有价值性的数据,以便制定适合个体发展的结构化和智能化系统学习方案。

3.4医学教育云资源

将云计算技术应用在医学教育领域,可以建立提供医学辅助教育服务的共享医学教育云平台。医学教育云平台将数字图书馆、教学资源库、试题库以及大量的在线开放课程等独立的共享资源融合在一起形成符合教育规律的集中式资源共建共享平台。云平台基于高速的数据通信、虚拟存储技术,为医学生提供了医学专业的内容支持,云服务在医学教育中的应用创建了医学辅助教育的新模式,对于提高教学质量、学习效率具有极大的优势。

4、人工智能在医学领域的局限性

4.1数据层面的局限性

除了数据量不均衡以及数据标准化不足之外,不规范的标注也是提升AI模型质量的一大障碍。医疗图像识别是人工智能在医疗行业的一大重点应用,分别有分类、检测和分割三种方法。它们都需要准确且全面的标注,否则会造成数据污染,影响模型效果。

4.2技术层面的局限性

从技术层面来看,目前AI的发展仍处于早期,即计算智能。尽管感知层面的技术有一定的进步,但认知层面的技术发展仍处于非常早期的阶段。而且几乎所有人工智能的最新进展都是通过监督式学习来完成的,即:输入数据到快速生成简单的回应。深度学习就是监督式学习中重要的方法,但其与有高度认知能力的人工智能还有很大差距。这种监督学习框架的致命弱点在于需要海量的经过标注的数据。就现状来说,非监督式学习理论仍不成熟,这导致其应用仍然存在很大的局限性。

可以想象,在一个普通的就医场景下,如果将医生与患者交互中的信息量换成AI算法识别的某几个指标,则会无形中丢失许多信息,并且对最终的诊断产生一定影响。因为患者与医生之间的交流存在复杂的前反馈,尽管已经通过文献或教材建立了相关病种的知识库,也仍缺少一个专业医生的常识库。而且当下的算法只能够通过学习诊断出已知的病症,却对疑难杂症一无所知。除了常识不足,相较于一个专业医生,人工智能技术并不能提供医患之间的情感交流,这种“糖丸效应”在实际就医中起到了非常积极的作用。同时,一个经验丰富的医生在进行诊断时,不仅会参考患者客观的病理情况,也会在交流过程中评估对方的心理及精神状态,帮助诊断其病情。但当今的人工智能技术尚未能够在感性智能上有所突破。

4.3市场及政策层面的局限性

据了解,如今人工智能医疗行业发展形式大好,但在国内审批及认证方面仍处于一个打磨的阶段。与美国FDA审批的医疗AI产品大多为二类医疗器械相比,国内目前是将新一代医疗AI定位为三类医疗器械,即高风险设备。所以产品基本上是必须通过临床试验的,并且临床评价的路径将控制得十分严格。

即便顺利通过了临床试验,如今用于审批的标准数据库也还在建设中。因为医疗AI产品的普遍适应性必须通过建立标准测试数据库来进行考核,从而确保模型可以在不同等级的医院环境下正常使用。

建立这个数据库要遵循广泛性、兼容性以及医学图像标记的标准性。广泛性要求数据来自不同城市的医院;兼容性要求有不同类别的图像,例如不同层厚的CT图像;医学图像标记的标准性则依靠招募有医疗AI研究背景的医生,并按统一标准的标注方案对医生进行培训,再进行标注。中国食品药品检定研究院官方微信发布的信息显示,2018年3月26日,标准测试数据集(眼底部分)建设完成,肺结节的标准数据库建设方案也已经定稿,近期即可建设完成。

当医疗AI企业顺利通过审批后,AI产品的性能、模型以及应用界面仍将不断快速迭代,那么传统的升级审批流程速度是无法满足产品的迭代需求和行业的发展速度的。据了解,在传统的审批流程下,医疗影像AI产品迭代周期是3-5天。如果每周都需要去 备更改,对于企业和政府部门都是重大的负担。

5、人工智能在医学领域的未来方向[4]

从产业生态链和与人交互的角度来看,未来人工智能由云部分和端部分构成。而作为其生态链顶层,云部分在未来将主要用于解决医疗信息的储存汇总管理、大数据挖掘和信息管理与决策等问题。例如谷歌的医疗大脑通过利用AI可以高效、快速分析海量数据的优势,处理了大量电子病历数据,甚至包括医生的手写笔迹。这些或结构化,或医生的随手注记均可以被神经 络所整合与分析。为了实现这样的服务,需要更高性能的储存、敏捷的架构和集群化的技术等,能够对需求或变化做出迅速的反应。至于端部分,在预防、诊断与治疗三个医疗流程阶段都可以介入并帮助提升医疗服务质量,应用场景十分广泛。

作为健康管理的前置位,人工智能在药物研发与疾病预测方面的发展被广泛关注。疾病风险预测将主要通过基因测序与检测,达到提前预测疾病发生风险的目的。而药物研发则要求在短时间内通过核磁共振和荧光显色等方法对大量待选化合物进行筛选,这需要大量的时间与开发成本。但如果应用AI技术,就可以进行虚拟筛选,对化合物的可能活性做出预测,从而缩减筛选范围,大大节省开发成本。而且科研人员可以结合科学文献,利用数据分析技术和文本挖掘方法,更智能地推断药物和疾病间的潜在关系,不仅可以在已知的范围内实践,更可以探索全新的药物线索。

在诊断和治疗阶段,人工智能医疗在辅助诊断、医学影像诊断和虚拟助手等应用领域中也在不断发展,并且技术已经相对成熟。例如结合影像辅助诊断与病理分析的技术准确率已高达99.5%,达到缓解医生阅片压力,提高医疗效率等目的。在辅助诊疗方面,许多公司通过利用人机交互的智能设备终端内部集成的各种智能传感器,收集并分析患者信息与身体情况,不仅可以协助医生及医院达到精准治疗的目的,还可以帮助患者进行自查,自主进行慢病管理或健康管理。其未来的发展路径将主要是便捷化、实时化与智能化。

除此之外,一直处于比较边缘的康复医疗也逐渐受到人们重视。由于我国当前康复医学的发展只满足了小部分需求,仍然有大量人群需要专业的康复医疗服务。华创证券预计,2022年,我国康复市场规模将达到1000亿,老年人、残疾人和慢性病患者等康复患者预测总人口为1.7亿。AI在康复医疗中的应用主要是采用深度学习技术获取人体运动信息,建造三维模型,从而帮助患者进行个性化健康评估,提供精准化康复方案。

参考文献

  1. 邰雪,赵天祺,孙亚茹,赵海霞.人工智能在临床医学的新型优势[J].内蒙古医科大学学 ,2021,43(03):316-319.
  2. 王家庆,王光锁.人工智能在医学中的应用进展[J].山东医药,2021,61(04):112-115.
  3. 万莉,贡丽英,吴清,穆得超.人工智能在高等医学教育中的应用前景[J].中国医学教育技术,2018,32(06):607-610.
  4. 王健宗.人工智能在医疗方面应用的局限性及对未来的展望[J].人工智能,2018(04):98-106.

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2021年10月1日
下一篇 2021年10月1日

相关推荐