点击上方“朱小厮的博客”,选择“设为星标”
回复”1024“获取独家整理的学习资料
2. 背景知识
- QPS:Queries per second 每秒的请求数目
- PPS:Packets per second 每秒数据包数目
- 摇红包:客户端发出一个摇红包的请求,如果系统有红包就会返回,用户获得红包
- 发红包:产生一个红包里面含有一定金额,红包指定数个用户,每个用户会收到红包信息,用户可以发送拆红包的请求,获取其中的部分金额。
3. 确定目标 在一切系统开始以前,我们应该搞清楚我们的系统在完成以后,应该有一个什么样的负载能力。 3.1 用户总数 通过文章我们可以了解到接入服务器638台,服务上限大概是14.3亿用户, 所以单机负载的用户上限大概是14.3亿/638台=228万用户/台。但是目前中国肯定不会有14亿用户同时在线,参考 http://qiye.qianzhan.com/show/detail/160818-b8d1c700.html的说法,2016年Q2 微信用户大概是8亿,月活在5.4 亿左右。所以在2015年春节期间,虽然使用的用户会很多,但是同时在线肯定不到5.4亿。 3.2. 服务器数量 一共有638台服务器,按照正常运维设计,我相信所有服务器不会完全上线,会有一定的硬件冗余,来防止突发硬件故障。假设一共有600台接入服务器。 3.3 单机需要支持的负载数 每台服务器支持的用户数:5.4亿/600 = 90万。也就是平均单机支持90万用户。如果真实情况比90万更多,则模拟的情况可能会有偏差,但是我认为QPS在这个实验中更重要。 3.4. 单机峰值QPS 文章中明确表示为1400万QPS.这个数值是非常高的,但是因为有600台服务器存在,所以机的QPS为 1400万/600= 约为2.3万QPS, 文章曾经提及系统可以支持4000万QPS,那么系统的QPS 至少要到4000万/600 = 约为 6.6万, 这个数值大约是目前的3倍,短期来看并不会被触及。但是我相信应该做过相应的压力测试。 3.5. 发放红包 文中提到系统以5万个每秒的下发速度,那么单机每秒下发速度50000/600 =83个/秒,也就是单机系统应该保证每秒以83个的速度下发即可。 最后考虑到系统的真实性,还至少有用户登录的动作,拿红包这样的业务。真实的系统还会包括聊天这样的服务业务。 最后整体的看一下 100亿次摇红包这个需求,假设它是均匀地发生在春节联欢晚会的4个小时里,那么服务器的QPS 应该是10000000000/600/3600/4.0=1157. 也就是单机每秒1000多次,这个数值其实并不高。如果完全由峰值速度1400万消化 10000000000/(1400*10000) = 714秒,也就是说只需要峰值坚持11分钟,就可以完成所有的请求。可见互联 产品的一个特点就是峰值非常高,持续时间并不会很长。
总结 从单台服务器看,它需要满足下面一些条件:
- 支持至少100万连接用户
- 每秒至少能处理2.3万的QPS,这里我们把目标定得更高一些 分别设定到了3万和6万。
- 摇红包:支持每秒83个的速度下发放红包,也就是说每秒有2.3万次摇红包的请求,其中83个请求能摇到红包,其余的2.29万次请求会知道自己没摇到。当然客户端在收到红包以后,也需要确保客户端和服务器两边的红包数目和红包内的金额要一致。因为没有支付模块,所以我们也把要求提高一倍,达到200个红包每秒的分发速度
- 支持用户之间发红包业务,确保收发两边的红包数目和红包内金额要一致。同样也设定200个红包每秒的分发速度为我们的目标。
想完整模拟整个系统实在太难了,首先需要海量的服务器,其次需要上亿的模拟客户端。这对我来说是办不到,但是有一点可以确定,整个系统是可以水平扩展的,所以我们可以模拟100万客户端,在模拟一台服务器 那么就完成了1/600的模拟。 和现有系统区别:和大部分高QPS测试的不同,本系统的侧重点有所不同。我对2者做了一些对比。
5. 技术分析和实现 5.1) 单机实现100万用户连接 这一点来说相对简单,笔者在几年前就早完成了单机百万用户的开发以及操作。现代的服务器都可以支持百万用户。相关内容可以查看: github代码以及相关文档: https://github.com/xiaojiaqi/C1000kPracticeGuide
系统配置以及优化文档:
https://github.com/xiaojiaqi/C1000kPracticeGuide/tree/master/docs/cn 5.2) 3万QPS 这个问题需要分2个部分来看客户端方面和服务器方面。
-
客户端QPS
因为有100万连接连在服务器上,QPS为3万。这就意味着每个连接每33秒,就需要向服务器发一个摇红包的请求。因为单IP可以建立的连接数为6万左右, 有17台服务器同时模拟客户端行为。我们要做的就保证在每一秒都有这么多的请求发往服务器即可。 其中技术要点就是客户端协同。但是各个客户端的启动时间,建立连接的时间都不一致,还存在 络断开重连这样的情况,各个客户端如何判断何时自己需要发送请求,各自该发送多少请求呢/span> 我是这样解决的:利用NTP服务,同步所有的服务器时间,客户端利用时间戳来判断自己的此时需要发送多少请求。
算法很容易实现:假设有100万用户,则用户id 为0-999999.要求的QPS为5万, 客户端得知QPS为5万,总用户数为100万,它计算 100万/5万=20,所有的用户应该分为20组,如果 time() % 20 == 用户id % 20,那么这个id的用户就该在这一秒发出请求,如此实现了多客户端协同工作。每个客户端只需要知道 总用户数和QPS 就能自行准确发出请求了。 (扩展思考:如果QPS是3万 这样不能被整除的数目,该如何办何保证每台客户端发出的请求数目尽量的均衡呢
-
服务器QPS
服务器端的QPS相对简单,它只需要处理客户端的请求即可。但是为了客观了解处理情况,我们还需要做2件事情。
- 第一:需要记录每秒处理的请求数目,这需要在代码里埋入计数器。
- 第二:我们需要监控 络,因为 络的吞吐情况,可以客观的反映出QPS的真实数据。为此,我利用python脚本 结合ethtool 工具编写了一个简单的工具,通过它我们可以直观的监视到 络的数据包通过情况如何。它可以客观的显示出我们的 络有如此多的数据传输在发生。
工具截图:
5.3) 摇红包业务 摇红包的业务非常简单,首先服务器按照一定的速度生产红包。红包没有被取走的话,就堆积在里面。服务器接收一个客户端的请求,如果服务器里现在有红包就会告诉客户端有,否则就提示没有红包。 因为单机每秒有3万的请求,所以大部分的请求会失败。只需要处理好锁的问题即可。
我为了减少竞争,将所有的用户分在了不同的桶里。这样可以减少对锁的竞争。如果以后还有更高的性能要求,还可以使用 高性能队列——Disruptor来进一步提高性能。 注意,在我的测试环境里是缺少支付这个核心服务的,所以实现的难度是大大的减轻了。另外提供一组数字:2016年淘宝的双11的交易峰值仅仅为12万/秒,微信红包分发速度是5万/秒,要做到这点是非常困难的。(http://mt.sohu.com/20161111/n472951708.shtml)
5.4) 发红包业务 发红包的业务很简单,系统随机产生一些红包,并且随机选择一些用户,系统向这些用户提示有红包。这些用户只需要发出拆红包的请求,系统就可以随机从红包中拆分出部分金额,分给用户,完成这个业务。同样这里也没有支付这个核心服务。
5.5)监控 最后 我们需要一套监控系统来了解系统的状况,我借用了我另一个项目(https://github.com/xiaojiaqi/fakewechat) 里的部分代码完成了这个监控模块,利用这个监控,服务器和客户端会把当前的计数器内容发往监控,监控需要把各个客户端的数据做一个整合和展示。同时还会把日志记录下来,给以后的分析提供原始数据。线上系统更多使用opentsdb这样的时序数据库,这里资源有限,所以用了一个原始的方案。 监控显示日志大概这样:
6. 代码实现及分析 在代码方面,使用到的技巧实在不多,主要是设计思想和golang本身的一些问题需要考虑。 首先golang的goroutine 的数目控制,因为至少有100万以上的连接,所以按照普通的设计方案,至少需要200万或者300万的goroutine在工作。这会造成系统本身的负担很重。 其次就是100万个连接的管理,无论是连接还是业务都会造成一些心智的负担。 我的设计是这样的: 首先将100万连接分成多个不同的SET,每个SET是一个独立,平行的对象。每个SET 只管理几千个连接,如果单个SET 工作正常,我只需要添加SET就能提高系统处理能力。 其次谨慎的设计了每个SET里数据结构的大小,保证每个SET的压力不会太大,不会出现消息的堆积。 再次减少了gcroutine的数目,每个连接只使用一个goroutine,发送消息在一个SET里只有一个gcroutine负责,这样节省了100万个goroutine。这样整个系统只需要保留 100万零几百个gcroutine就能完成业务。大量的节省了cpu 和内存 系统的工作流程大概是:每个客户端连接成功后,系统会分配一个goroutine读取客户端的消息,当消息读取完成,将它转化为消息对象放至在SET的接收消息队列,然后返回获取下一个消息。 在SET内部,有一个工作goroutine,它只做非常简单而高效的事情,它做的事情如下,检查SET的接受消息,它会收到3类消息
- 客户端的摇红包请求消息
- 客户端的其他消息 比如聊天 好友这一类
- 服务器端对客户端消息的回应
对于第1种消息客户端的摇红包请求消息 是这样处理的,从客户端拿到摇红包请求消息,试图从SET的红包队列里 获取一个红包,如果拿到了就把红包信息 返回给客户端,否则构造一个没有摇到的消息,返回给对应的客户端。
对于第2种消息客户端的其他消息 比如聊天 好友这一类,只需简单地从队列里拿走消息,转发给后端的聊天服务队列即可,其他服务会把消息转发出去。
对于第3种消息服务器端对客户端消息的回应。SET 只需要根据消息里的用户id,找到SET里保留的用户连接对象,发回去就可以了。 对于红包产生服务,它的工作很简单,只需要按照顺序在轮流在每个SET的红包产生对列里放至红包对象就可以了。这样可以保证每个SET里都是公平的,其次它的工作强度很低,可以保证业务稳定。
见代码: https://github.com/xiaojiaqi/10billionhongbaos
7. 实践 实践的过程分为3个阶段 阶段1 分别启动服务器端和监控端,然后逐一启动17台客户端,让它们建立起100万的链接。在服务器端,利用ss 命令 统计出每个客户端和服务器建立了多少连接。 命令如下:
结果如下:
阶段2 利用客户端的http接口,将所有的客户端QPS 调整到3万,让客户端发出3W QPS强度的请求。 运行如下命令:
阶段3 利用客户端的http接口,将所有的客户端QPS 调整到6万,让客户端发出6W QPS强度的请求。
- 当非常多goroutine 同时运行的时候,依靠sleep 定时并不准确,发生了偏移。我觉得这是golang本身调度导致的。当然如果cpu比较强劲,这个现象会消失。
- 因为 络的影响,客户端在发起连接时,可能发生延迟,导致在前1秒没有完成连接。
- 服务器负载较大时,1000M 络已经出现了丢包现象,可以通过ifconfig 命令观察到这个现象,所以会有QPS的波动。
第二张是 服务器处理的QPS图:
总结 按照设计目标,我们模拟和设计了一个支持100万用户,并且每秒至少可以支持3万QPS,最多6万QPS的系统,简单模拟了微信的摇红包和发红包的过程。可以说达到了预期的目的。 如果600台主机每台主机可以支持6万QPS,只需要7分钟就可以完成 100亿次摇红包请求。 虽然这个原型简单地完成了预设的业务,但是它和真正的服务会有哪些差别呢罗列了一下
相关推荐:
-
《科普 | 明星公司之Netflix》
-
《看我如何作死 | 将CPU、IO打爆》
-
《看我如何作死 | 络延迟、丢包、中断一个都没落下》
-
《7102-2019年技术文全套整理,建议收藏》
-
《看我如何假死!》
-
《总结缓存使用过程中的几种策略以及优缺点组合分析》
加技术群入口(备注:技术):>>>Learn More
免费资料入口(备注:1024):>>>Learn More
免费星球入口:>>>Free
点个“在看”呗^_^
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!