汽车域控制器技术

图2-3 全球域控制器市场预测
整个汽车行业普遍认为,域控制器是汽车电子行业未来竞争门槛最高的部分,因此利润也最高,芯片厂商和核心算法供应商将会受益。
(一) 域控制器市场快速增长背后的驱动因素
更多更好的ADAS功能和智能座舱与信息娱乐功能一直是推动域控制器市场快速增长的主要因素,这些新功能能明显提高整车的科技感和用户体验,因此也是主机厂开发新车型时的投入重点。L1到L2+级别之间的ADAS应用是这几年发展非常快,很多功能都正在快速普及,比如:停车辅助、车道偏离预警、自适应巡航、碰撞避免、盲点侦测、驾驶员疲劳探测等。
域控制器需要一颗性能更强、集成度越高的主控处理器来作为其大脑,更多原本通过分离ECU实现的功能现在可以放到域主控处理器上来实现,也因此就能更加节省功能域里所需的ECU用量和其它硬件资源。更高的集成度可以更主机厂供应链管理实现ADAS域控和相关零部件平台化和标准化的要求。
(二) 对域控制器供应链的影响
汽车E/E架构的演进和发展,也深刻影响了主机厂和汽车电子供应商的供应关系。主机厂的核心竞争力从以前的机械制造为主,全面转向软件和算法为重点。预计未来整车厂与Tier 1供应商之间将可能有两种合作模式:
其一,Tier 1负责域控制器硬件设计和生产,以及中间层Middleware软件部分。整车厂负责自动驾驶软件部分。Tier 1的优势在于以合理的成本将产品生产出来并且加速产品落地,因此整车厂和Tier 1进行合作生产方式是必然,前者负责自动驾驶软件部分,后者负责硬件生产、中间层以及芯片方案整合。这种模式下,在项目立项时,整车厂又可能跨过Tier 1直接与芯片厂商确定方案的芯片选型。
其二,Tier 1自己与芯片商合作,做方案整合后研发中央域控制器并向整车厂销售,例如大陆ADCU、采埃孚ProAI、麦格纳MAX4等。
2.1 智能座舱域控制器
座舱智能化的实质是基于汽车驾驶舱中的人机交互场景,将驾驶信息与娱乐信息两个模块进行集成,为用户提供高效的、直观的、充满未来科技感的驾驶体验。智能座舱的设计诉求主要是用于提升用户的驾乘体验,同时还要保证用户驾乘的安全性和舒适性,最终实现汽车作为人们工作和家庭场景以外的第三生活空间这一终极目标。
智能座舱域包括HUD、仪表盘(Cockpit)和车载娱乐信息系统(In-Vehicle Infotainment,简称IVI)三个最主要的组成部分。
HUD是非常实用的功能,将ADAS和部分导航功能投射到挡风玻璃上,诸如ACC、行人识别、LDW、路线提示、路口转弯提示、变道提示、剩余电量、可行驶里程等。HUD将很快会演变为AR HUD,在L3和L4时代成为标配。
进入L3时代,驾驶员状态监测(Driver Status Monitor,DMS)将成为必备的功能,包括:面部识别、眼球追踪、眨眼次数跟踪等将引入机器视觉和深度学习算法。而L4时代则必备V2X(Vehicle to everything)。
另外,多模态交互技术的蓬勃发展将会极大改变用户与汽车的交互模式。基于语音识别功能的语音交互技术越来越普及,常用于跟IVI系统的交互操作。进一步还能通过语音来对驾驶员进行情绪状态分析。当DMS系统检测到驾驶员昏昏欲睡时,系统可以通过播放音乐或者释放香味来唤醒驾驶员;基于多场景下的汽车座舱多模态交互技术未来一定会重新定义人机交互技术的发展。
所有这些智能座舱新技术的发展,都将推动对座舱域计算资源需求的暴增。
智能座舱域控制器领域,全球Tier 1厂商主要包括:博世、大陆汽车、哈曼、伟世通和Aptiv(安波福)等。中国本土企业主要有德赛西威、航盛和东软睿驰等。

表2-2 全球主要ADAS域控制器厂商信息
3.
域控制器发展趋势
域控制器的兴起对传统的汽车MCU厂商造成了极大的挑战,“因为MCU使用量将大大减少,传统的MCU产品其演进路线将不复存在”。
在分布式ECU时代,计算和控制的核心是MCU芯片,传输的基础核心是基于传统的CAN、LIN和FlexRay等低速总线。但在域控制器时代,高性能、高集成度的异构SoC芯片作为域的主控处理器,将成为域控制器的计算与控制的核心芯片。而汽车TSN(Time-Sensitive Network)以太 因为具有高带宽、实时和可靠的数据通信能力等特点,必将成为整车通信的核心基础设施,尤其是域主控处理器之间的通信主干 。
下面来简单分析一下域控制器以及核心的主控处理器的一些关键技术和趋势。
3.1 高性能
总的来说,对算力的需求提升一直是域控制器核心芯片发展的主要推动力。一方面原本由多个ECU完成的功能,现在需要依靠单一的域主控处理器来完成,并且还需要管理和控制所连接的各种传感器与执行器等。比如:底盘、动力传动系统和车身舒适电子系统的域主控处理器,其算力需求大约在10000DMIPS-15000DMIPS左右。

  1. 密钥泄漏问题:如果密钥存储在应用程序的代码或数据中,很容易被泄漏。所以有必要增加一个硬件模块,专门存储密钥。
  2. Crypto算法加速:通过内核来直接进行加密或解密运算会占用大量CPU算力资源。因此,有必要通过硬件模块来进行加密解密算法的加速。
    SHE(Secure Hardware Extension)标准是由奥迪和宝马公司合作制定的、针对硬件安全模块HSM的规范,主要包括密码模块的硬件、硬件软件接口。这个规范已被广泛接受,很多针对汽车行业的微处理器都支持这个规范。
    3.8 面向服务的软件架构SOA
    ECU原先运行的软件大多数是按照Classic AutoSAR规范开发的软件系统,其中的应用软件一般都是静态调度(Static Scheduling)模式的,也即在系统运行时,程序中不同功能的函数按照事先定义好的排序文件依次调用、逐个运行。静态调度的优点是资源分配问题都是事先安排好的,车辆量产后就不会再改变,每个功能对应的函数代码具体运行时间也被提前锁定,是确定性的。因此这种设计对于汽车上很多对功能安全要求苛刻的场景是非常适合的。比如:决定安全气囊是否打开的功能函数就是固定地每隔几毫秒运行一次,以便紧急情况下可以及时打开。
    承载计算和控制的底层硬件从分散的多个ECU集中到多核、异构的高性能域主控处理器后,相应的软件也会从分散向集中、从简单向复杂、从静态向动态进化。下图2-7显示了以后汽车域控制器上的典型软件架构:
    汽车域控制器技术
    图2-7 域控制器上基于空分虚拟化技术的典型软件架构
    操作系统层:最底层利用Hypervisor虚拟化技术对硬件资源进行分区(partition),从而可以在每个虚机运行不同的操作系统。比如在上图中,虚机VM1中运行兼容POSIX实时操作系统标准(比如PSE 52)的RTOS,RTOS上通常要承载功能安全相关的应用和服务;虚机VM2中运行Linux这种完全POSIX标准的分时操作系统,上面通常运行管理相关的功能和服务;虚机VM3中运行的可能是原来在ECU上运行的Legacy应用。
    中间件层:操作系统是不做任何与“车”特定相关工作的。为了让域主控处理器在汽车场景下使用,需要有很多软件或者中间件用于让域控制器满足汽车的电源管理标准、 络管理标准以及诊断标准等;车载域控制器需要比一般工业嵌入式系统有更高的可靠性要求,这样就需要在计算机OS基础上再附加对存储和通讯等各方面的安全保护和容错机制;同时,位了让车载域控制器能够在整车EE架构下运行,还需要提供时钟同步、日志跟踪以及服务管理和发现等功能。Adaptive AutoSAR规范定义了运行在Linux或者完全兼容POSIX 1003.1标准RTOS上的这一层与“车”相关的中间件标准;而传统运行在POSIX子集的RTOS或者BareMetal模式的中间件规范则由Classic AutoSAR标准定义。
    应用层:上层应用基于AutoSAR标准的中间件来进行开发。随着汽车智能化和 联化相关的功能越来多,上层应用软件也越来越复杂。位了降低单个应用的整体复杂性,可以借鉴互联 的面向服务架构(SOA)的软件设计思想,将一个复杂应用拆分多个服务。每个服务实现得尽可能小,尽量实现成无状态方式的服务,以利于整个系统的开发、测试和软件重用。服务与服务之间通过事件或者消息总线(发布/订阅工作模式)来进行通信,并降低互相之间的耦合度。通过服务配置来管理服务之间的依赖性、服务的部署和启动,以及服务的健康状态检测等。
    汽车以太 给车载系统通信带来一个革命性的变化,在中央计算式汽车EE架构下,整个车载系统可以被看作是一个分布式 络系统:中央计算平台是一个小型服务器集群,区域计算平台是边缘计算节点。在互联 或者大型分布式系统中,SOA架构设计理念已经被广泛使用了。因此当IP 络技术被广泛应用于汽车后,很多在互联 或者分布式计算中已经很成熟的软件技术,自然会被借鉴到新的汽车软件架构设计中来,比如:RPC技术、事件/消息总线、RESTful API设计等。
    大型互联 数据中心中的服务器集群动辄几百、上千台服务器,每秒百万、千万级别的并发。车载系统尽管可以被看作是一个分布式 络系统,但是却没有互联 大型服务器系统的高并发特征,相反,更注重通信的实时性和可靠性。
    车载系统在物理上是向集中式发展的,也就是原来通过多个分散ECU来实现的功能,渐渐集中到几个主要的高性能域控制器上。因此,尽管在软件设计上,会尽量按照SOA的思路拆分成一个一个小的服务,但是这些服务在部署上其实是集中式的。鉴于这种物理部署上的“集中”与运行时的“分布式”并存的特点,因此可以通过一系列技术手段来优化服务与服务之间的通信延迟(比如:通过共享内存技术)。这是车载分布式系统与互联 强调高并发特性的分布式系统之间另一个显著的差别。

小结
域集中式EE架构会是未来相当长一段时间占主要地位的汽车EE架构,域控制器作为域集中式EE架构的核心,会在整个汽车产业链中占据越来越重要的地位。其相应的芯片和硬件方案、操作系统和算法等将会成为整个产业链各上下游厂家的争夺焦点。

汽车五大域控制器
根据国外主流供应商的总结经验,现如今行业中将汽车E/E架构按功能划分为动力域(安全)、底盘域(车辆运动)、座舱域(信息娱乐)、自动驾驶域(辅助驾驶)和车身域(车身电子)五大区域,每个区域对应推出相应的域控制器,最后再通过CAN/LIN等通讯方式连接至主干线甚至托管至云端,从而实现整车信息数据的交互。

1、动力域控制器

动力域控制器是一种智能化的动力总成管理单元。借助CAN/FLEXRAY实现变速器管理,引整管理电池监控交流发电机调节。其优势在于为多种动力系统单元(内燃机、电动机发电机、电池、变速箱)计算和分配扭矩通过预判驾驶策略实现CO2减排通信 关等,主要用于动力总成的优化与控制,同时兼具电气智能故障诊断智能节电、总线通信等功能。
以多核安全微处理器为核心的硬件平台对动力域内子控制器进行功能整合,集成各ECU的基本功能需要的硬件针对动力域VClLIverterTCU BMS和DCDO等高级的域最次算法提供当力支持以ASIL-C安全等级为目标,具备SOTA信息安全、通讯管理等功能。
支持的通讯类型包括CAN/CAN-FD,GigabitEthernet并对通讯提供SHA-256加密算法支持面向CPUGPU发展,需要支持AdapativeAUTOSAR环境,或支持POSIX标准接口的操作系统。

2、底盘域控制器

底盘域是与汽车行驶相关,由传动系统、行驶系统转向系统和制动系统共同构成。随着汽车智能化发展,智能汽车的感知识别、决策规划、控制执行三个核心系统中,与汽车零部件行业最贴近的是控制执行端,也就是驱动控制、转向控制、制动控制等,需要对传统汽车的底盘进行线控改造以适用于自动驾驶。
线控底盘主要有五大系统,分别为线控转向线控制动、线控换挡线控油门线控悬挂,线控转向和线控制动是面向自动驾驶执行端方向最核心的产品。

底盘域控制器应采用高性能、可扩展的安全计算平台,并支持传感器-群集及多轴惯性传感器,并且可检查和惯性传感器信 融合实现车辆动态模型的高性能安全计算,同时达成高性价比。现如今底盘电控越来越普及,底盘上电控产品的数据往往可以达到10个以上,当前电子底盘系统以零部件划分,如车身稳定控制系统ESC电子助力系统IBS电子转向系统EPS电子县架等,各个子系统属于不同供应商或OEM的不同开发部门,同时每个子系统都拥有独立的汽车动力控制系统和车辆动态控制模型,此外每个底盘电子产品的进行车辆控制的侧重点也有不同,如舒适性,操控性以及安全性。以上这些现状导致了在底盘电控开发上,软硬件耦合关系强,存在重复研发,开发成本高,各子系统存在相抵的负作用种种问题,使得车辆控制无法达到最优的状态。
正是在这样的背景下,在高度自动驾驶领域,迫切需要底盘域控制器产品的出现。实现转向、制动悬架的集中控制软硬件分离;车辆的横向纵向垂向协同控制更好的服务于ADAS全面提高整车性能。
首先结合现有底盘电子产品的功能定义,以及高度自动驾驶系统的需求,底盘域控制器需要实现如下的功能:
自动驾驶-车辆执行控制
●指令模式仲裁控制:底盘域控制器不仅需要执行上层感知层和决策层的指令,更需要发挥自动驾驶“小脑”的作用结合整车车辆状态稳定性安全性综合判断,决策出更优的控制指令。
●横向纵向垂向线控执行控制:进行横向纵向垂向控制,实现6自由度的协同控制。
●车辆运动状态控制:向上层反馈当前车辆运动状态,使得决策层更加有效的进行车辆控制。
●整车稳定性控制车辆姿态,状态识别及预测主动垂向稳定控制。
●车身稳定性控制后轮转向控制
舒适性控制
●驾驶模式切换
●地形自适应控制
●驾驶工况
●自适应控制
●智能悬架控制
●综合控制
●转向助力
●制动助力
●驻车控制
其次为了满足高度自动驾驶的要求,需要重点考虑底盘域控制器的冗余设计,需要包括如下

●冗余特行传感器端,包括加速踏板开度,制动踏板开度,轮速传感器,车身高度传感器,方向盘转角力矩传感器,惯量传感器等,均需要有冗余备份。
●在域控制器内部,需要有双路的主控芯片,电源管理芯片,预驱芯片
●在通讯端,需要有冗余的 络设计

3、智能座舱域控制器

智能座舱域控制器需要具备卓越的处理性能,以支持座舱域的应用,如语音识别,手势识别等;提供优秀的显示性能支持,同时支持虚拟化技术,支持一芯多屏显示,满足各种尺寸的仪表屏及中控屏幕显示需要,并将不同安全级别的应用进行隔离。
同时提供对外对内的通讯能力搭载5G千兆以太 wif6等技术,提供稳定、高速的通信 络以轻松应对VR/AR4K乃至8K视频等高带宽应用的 络要求。针对公 通讯连接提供可靠的 联服务实现远程控制、整车OTA。
提升算力平台、集成度和感知通信能力。
第一、基于更高算力的座舱域控制器芯片开发产品集成度更高。集成仪表T-BOX和车机、空调控制、 HUD、后视镜、DMS等。
第二、开发AR/抬头显示HUD内后视镜替代屏外后视镜替代视觉系统仪表屏、中控屏、副驾显示屏后排娱乐屏等多屏互动交互方案,提升用户体验。
第三,基干win65GCV2X以及多模融合的高精定位技术,开发智能天线产品,通信可靠性高,低时延,高带宽为智能 联汽车提供多重无线通讯整合的车联 方案。

4、自动驾驶域控制器

随着自动驾驶的来临,其所涉及的感知控制、决策系统复杂性更高,与车身等其它系统的信息交互控制的场景也越来越多,各方都希望其能变成一个模块化的、可移植性的、便于管理的汽车子系统。因此。专门定位于自动驾驶的域控制器系统就应运而生了。
自动驾驶的域控制器。需要具备多传感器融合。定位,路径规划,决策控制,无线通讯,高速通讯的能力。
第一,通常需要外接多个摄像头、毫米波雷达激光雷达,以及IMU等设备,完成的功能包含图像识别数据处理等,因此外围接口可根据应用场景按需扩展增加。
第二,自动驾驶域控制器需要感知环境和实现信息融合,逻辑运算和决策控制,适应深度学习算法超大算力需求故一般采用GPU或是人工智能芯片TPU处理承担大规模浮点数并行计算包括了摄像头、激光雷达等识别、融合、分类,因此需要域控制器提供足够可扩展的算力支撑,同时平台算力性能可扩展硬件扩展能力强。
第三为应对功能安全、冗余监控车辆控制,保证可靠性满足ISO26262功能安全ASIL-D的要求一般采用安全MCU实现。
第四,域控制器与其他域交互能力需要支持未来数据量增长,采用支持千兆以太 或万兆以太 。
中国L2级以上智能汽车市场已经进入快速渗透期预计2025年将超过40%。随着新一代E/E普及,预计2025年自动驾驶域控制器出货量将超过400万台套。目前自动驾驶域控制器行业演变形成传统外资Tier1本土Tier1互联 科技与软件公司、整车企业四大阵营,拥有软硬件技术融合的公司优势相对较为突出。外资Tier企业倾向于一揽子域控制解决方案的“交钥匙”工程,而国内Tier1企业偏向采用协同分工的模式。
5、车身域控制器

随着整车发展,车身控制器越来越多,为了降低控制器成本,降低整车重量,集成化需要把所有的功能器件,从车头的部分车中间的部分和车尾部的部分如后刹车灯、后位置灯、尾门锁、甚至双撑杆统一连接到一个总的控制器里面。

车身域控制器从分散化的功能组合,逐渐过渡到集成所有车身电子的基础驱动、钥匙功能、车灯、车门、车窗等的大控制器。车身域控制系统综合灯光、雨刮洗涤、中控门锁、车窗控制;PEPS智能钥匙、低频天线、低频天线驱动、电子转向柱锁IMMO天线 关的CAN可扩展CANFD和FLEXRAY、LIN 络、以太 接口;TPMS和无线接收模块等进行总体开发设计。车身域控制器能够集成传统BCMPEPS、纹波防夹等功能。
从通信角度来看,存在传统架构-混合架构-最终的VehicleComputerPlatform的演变过程。这里面通信速度的变化,还有带高功能安全的基础算力的价格降低是关键,未来在基础控制器的电子层面兼容不同的功能慢慢有可能实现。
采用业内最高规格的域控MCU实现功能安全目标。通过多核安全处理器平台,将不同功能、不同安全等级、不用算力要求的应用置于不同的核运行,降低整个系统运行故障风险。同时具有丰富的通信资源:支持16路CAN-FD24路LIN2路以太 等总线资源,提供稳定、高速的通信 络,能轻松应对各种 络要求;软件系统支持AUTOSARCPAUTOSARAP车载智能操作系统,以实现分层设计,使上层应用完全独立于硬件平台开发,增强了系统的可移植性和软件模块复用性,使得应用设计的扩展更加丰富。升级域控制器框架和接口技术,基于跨域控制通信系统,提升跨域权限和冲突管理及算力优化配置:

  1. 升级域控制器框架和接口技术。基于跨域控制通信系统提升跨域权限和冲突管理及算力优化配置;
  2. 升级跨域控制器集成技术。分析跨域通讯的数据交互的延时特性建立跨域控制系统集成框架;
  3. 升级架构系统的硬件及器件的冗余性,加强软件的安全策略,实现跨控制域的冗余容错技术框架和算法;

总结

面对汽车新E/E架构的转型升级,软件架构逐步实现分层解耦,硬件从分布式向域控制/中央集中式发展,车载 络通信从LN/CAN总线向以太 方向发展。在这个转型中,重要的关键特征是需要有标准化的控制器的引入。标准域控制器的形成,和面向SOA化的软件架构需要逐渐清晰,车企可以更容易的进行上层应用软件开发功能的更新和升级提供个性化差异化的功能与服务加快车型向智能化发展。
标准化域控制器产品及面向SOA的软件架构将加快汽车产业向智能化快速发展。在电子电器架构变化过程当中,逐渐的共识是中央域控制器和自动驾驶域控制器可能是最先引入,并且将成为影响最大的两个域控制器。如何用最短的周期、高效开发的方法有限的开发资源,提升智能化水平,中央域控制器和自动驾驶域控制器带来的效果是最明显的,会解决整车软件的升级、T化基础设施的建设以及自动驾驶全域功能软件的开发和升级。

参考链接
https://mp.weixin.qq.com/s/EyWK2D157Rd90YqAhQNIFQ
https://mp.weixin.qq.com/s/cjFsVRGaLuC05s4DEpt7cw
https://baike.baidu.com/item/%E5%9F%9F%E6%8E%A7%E5%88%B6%E5%99%A8/8656707r=aladdin
https://zhuanlan.zhihu.com/p/466048587

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年3月20日
下一篇 2022年3月20日

相关推荐