导读: 随着营销 3.0 时代的到来,企业愈发需要依托强大 CDP 能力解决其严重的数据孤岛问题,帮助企业加温线索、促活客户。但什么是 CDP 、好的 CDP 应该具备哪些关键特征文在回答此问题的同时,详细讲述了爱番番租户级实时 CDP 建设实践,既有先进架构目标下的组件选择,也有平台架构、核心模块关键实现的介绍。
一、CDP是什么
1.1 CDP由来
C DP(Customer Data Platform)是近些年时兴的一个概念。随着时代发展、大环境变化,企业在自有媒体增多的同时,客户管理、营销变难,数据孤岛问题也愈发严重,为了更好的营销客户 CDP 诞生了。纵向来看,CDP 出现之前主要经历了两个阶段 :
- CRM 时代,企业通过电话、短信、E-mail 与现有客户和潜在客户的互动,以及执行数据分析,从而帮助推动保留和销售;
- DMP 阶段,企业通过管理各大互联 平台进行广告投放和执行媒体宣传活动。
- 客户管理:CRM 侧重于销售跟单,CDP 更加侧重于营销。
2.DMP vs CDP
-
数据类型:DMP是匿名数据为主,CDP 以实名数据为主。
-
数据存储:DMP数据只是短期存储,CDP 数据长期存储。
1.2 CDP定义
2013 年 MarTech 分析师 David Raab 首次提出 CDP 这个概念,后来其发起的 CDP Institute 给出权威定义:packaged software that creates a persistent, unified customer database that is accessible to other systems。 这里面主要包含三个层面:
- Packaged Software :基于企业自身资源部署,使用统一软件包部署、升级平台,不做定制开发。
- Persistent , Unified Customer Database :抽取企业多类业务系统数据,基于数据某些标识形成客户的统一视图,长期存储,并且可以基于客户行为进行个性化营销。
- Accessible to Other Systems :企业可以使用 CDP 数据分析、管理客户,并且可以通过多种形式取走重组、加工的客户数据。
1.3 CDP分类
CDP 本身的 C(Customer)是指 all customer-related functions, not just marketing 。面向不同场景也对应不同类型的 CDP ,不同类别的 CDP 主要是功能范围不同,但是类别之间是递进关系。
主要分为四类:
- Data CDPs: 主要是客户数据管理,包括多源数据采集、身份识别,以及统一的客户存储、访问控制等。
- Analytics CDPs: 在包含 Data CDPs 相关功能的同时,还包括客户细分,有时也扩展到机器学习、预测建模、收入归因分析等。
- Campaign CDPs: 在包含 Analytics CDPs 相关功能的同时,还包括跨渠道的客户策略(Customer Treatments),比如个性化营销、内容推荐等实时交互动作。
- Delivery CDPs: 在包括 Campaign CDPs 相关功能的同时,还包括信息触达(Message Delivery),比如邮件、站点、APP、广告等。
二、挑战与目标
2.1 面临挑战
随着营销 3.0 时代的到来,以爱番番私域产品来说,主要是借助强大的 CDP 为企业提供线上、线下数据的打通管理的同时,企业可以使用精细化的客户分群,进行多场景的增育活动(比如自动化营销的手段,节假日促销通知,生日祝福短信,直播活动等等)。更重要的是,企业可以基于纯实时的用户行为进行更加个性、准确、及时的二次实时营销,帮助企业加温线索、促活客户,提升私域营销转化效果。那如何做好实时 CDP(Real-Time CDP,缩写为 RT-CDP )驱动上层营销业务,面临诸多挑战。
业务层面
爱番番的客户涉及多类行业,有的B2C的也有B2B2C的。相对与B2C,B2B2C的业务场景复杂度是指数级上升。在管理好B、C画像的同时,还要兼顾上层服务的逻辑里,比如身份融合策略、基于行为的圈选等。另外,在许多业务场景也存在很多业务边界不清晰的问题。
技术层面 1.全渠道实时精准识别要求高 当今时代一个客户行为跨源跨设备跨媒体,行为轨迹碎片化严重。如果企业想营销效果好,精准、实时识别客户、串联客户行为轨迹是重要前提。那如何在多源多身份中做到高性能的实时识别也是个很大挑战。 2.需要具有实时、低延迟处理海量数据的能力 现在客户可选择性多,意向度不明确,基于客户行为实时营销,以及基于客户反馈的实时二次交互是提高营销效果的关键,比如企业营销部门群发一个活动短信,客户点没点,点了有什么样进一步的动作,代表着客户不同的意向程度,企业营销、销售人员需要根据客户动作进行及时进一步的跟进。只有实时把握这些变化,才能更高效地促进营销活动的转化。如何实时处理海量数据驱动业务 3.需要可扩展的架构 在多租户背景下,爱番番管理数千、万中小企业的海量数据。随着服务企业数量的不断增加,如何快速不断提升平台的服务能力,需要设计一个先进的技术架构。另外,如何做到高性能、低延迟、可伸缩、高容错,也是很大的技术挑战。 4.多租户特性、性能如何兼顾 爱番番私域产品是以 SaaS 服务形式服务于中小企业,那一个具备多租户特性的 CDP 是一个基本能力。虽然中小企业客户一般十万、百万量级不等,但随着企业进行的营销活动的累增,企业的数据体量也会线性增长。对于中大企业来说,其客户量级决定了其数据体量增长速度更快。另外,不同企业对于数据查询的维度各异很难做模型预热。在此前提下,如何兼顾可扩展性、服务性能是个难题。 5.多样部署扩展性
CDP 目前主要以 SaaS 服务服务于中小企业,但不排除后续支持大客户 OP 部署 (On-Premise,本地化部署)的 需求,如何做好组件选型支持两类服务方式
2.2 RT-CDP建设目标
2.2.1 关键业务能力
经过分析和业务抽象,我们觉得,一个真正好的RT-CDP需要做到如下几个关键特征:
-
灵活的数据对接能力: 可以对接客户各种数据结构多类数据源的客户系统。另外,数据可以被随时访问。
-
同时支持 B2C和B2B两类数据模型: 面向不同的行业客户,用一套服务支撑。
-
统一的用户、企业画像: 包含属性、行为、标签(静态、动态(规则)标签、预测标签)、智能评分、偏好模型等等。
-
实时的全渠道身份识别、管理: 为了打破数据孤岛,打通多渠道身份,是提供统一用户的关键,也是为了进行跨渠道用户营销的前提。
-
强大的用户细分能力(用户分群): 企业可以根据用户属性特征、行为、身份、标签等进行多维度多窗口组合的用户划分,进行精准的用户营销。
-
用户的实时交互、激活: 面对用户习惯变化快,实时感知用户行为进行实时自动化营销能力尤为重要。
- 安全的用户数据管理: 数据长期、安全存储是数据管理平台的基本要求。
2.2.2 先进技术架构
明确平台业务目标的同时,一个先进的技术架构也是平台建设的目标。如何做到平台架构,我们有如下几个核心目标:
1.流数据驱动
在传统数据库、数据处理上,还主要是『数据被动,查询主动』。数据在数据库中处于静止状态,直到用户发出查询请求。即使数据发生变化,也必须用户主动重新发出相同的查询以获得更新的结果。但现在数据量越来越大、数据变化及时感知要求越来越高,这种方法已无法满足我们与数据交互的整个范式。
现在系统架构设计如下图,更倾向于主动驱动其他系统的架构,比如领域事件驱动业务。数据处理亦是需要如此:『 数据主动、查询被动 』。
举个例子,企业想找到访问过企业小程序的用户进行发短信时,两种分别如何做
-
传统方式:先将用户数据存入存储引擎,在企业发短信之前再将查询条件转换成sql,然后去海量数据中筛选符合条件的用户。
-
现代方式:在用户数据流入数据系统时,进行用户画像丰富,然后基于此用户画像进行符不符合企业查询条件的判断。它只是对单个用户数据的规则判断,而不是从海量数据筛选。
三、技术选型
没有万能的框架,只有合适的取舍。需要结合自身业务特点和架构目标进行合理选型。结合 RT-CDP 建设目标,我们做了如下几个核心场景的组件调研、确定。
3.1 身份关系存储新尝试
在 CDP 中跨渠道身份打通(ID Mapping)是数据流渠道业务的核心,需要做到数据一致、实时、高性能。
传统的 ID Mapping 是怎么做
1.使用关系型数据库存储身份关系一般是将身份关系存成多表、多行进行管理。该方案存在两个问题:
-
数据高并发实时写入能力有限;
-
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!