未来,我国高校人工智能领域研究生培养课程体系到底怎么建?2022年教育部学位管理与研究生教育司推出《人工智能领域研究生指导性培养方案(试行)》,对相关研究生阶段课程体系建设给出了参考答案。
未来,我国高校人工智能领域研究生培养课程体系到底怎么建?2022年教育部学位管理与研究生教育司推出《人工智能领域研究生指导性培养方案(试行)》,对相关研究生阶段课程体系建设给出了参考答案。
人工智能领域研究生培养课程体系参考建议
人工智能领域研究生核心课程参考建议
一、基础知识类课程
(一)人工智能模型与理论
本课程将重点讲解人工智能基本算法、模型和理论。内容主要包括以符 主义为核心的逻辑推理、以问题求解为核心的探询搜索、以数据驱动为核心的机器学习、以行为主义为核心的强化学习和以博弈对抗为核心的决策智能等算法以及人工智能与科学计算相结合算法。
(二)数学优化
机器学习、计算机视觉、自然语言处理等技术不断发展,优化技术逐渐成为人工智能领域的重要数学基础。本课程从凸优化入手,介绍优化核心原理、基本方法和前沿技术,为智能方向的科学探索做理论准备。本课程将帮助学习者正确理解优化复杂度的概念,掌握分析凸优化复杂度的基本方法,了解一阶、二阶方法在不同问题类上的求解性能,熟悉包括免疫算法、粒子群算法等的多种优化方法的基本思路,不断提高分析解决实际问题的能力。
(三)机器学习
本课程致力于介绍经典的机器学习算法,让学生初步掌握机器学习领域的基本方法与蓝图。通过掌握机器学习的算法与理论知识,能查阅并理解相关领域的前沿文献,同时熟练使用相关的机器学习算法,解决流行的人工智能领域应用问题,为今后在深度学习相关教学、科研和项目开发工作中深入解决实际应用问题打好基础。
二、专业知识类课程
(一)计算机视觉
计算机视觉是关于如何使机器“看”的科学和技术,通过对采集的图片或视频进行处理以获得相应场景的三维信息,是人工智能的重要分支,在自动驾驶、虚拟现实、生物识别、安全监控、智能制造等领域发挥着重要的作用。本课程首先介绍计算机视觉领域的发展历史和主要应用,之后讲解计算机视觉的主要任务和应用场景,包括成像原理、边界和曲线、图像分类、图像分割、目标检测、形状分析、纹理分析、图像重构、图像生成、人脸识别等;着重介绍以上主要任务中的关键技术难题、重大技术突破,针对这些任务的主流方法,特别是基于统计模式分类和人工神经 络的方法。
(二)自然语言处理
自然语言处理是关于实现人与计算机之间用自然语言进行有效通信的各种理论和方法,是人工智能的重要研究内容,在 络搜索、广告、电子邮件、客户服务、语言翻译、医疗诊断等领域得到广泛应用。课程具体内容包括自然语言处理中的词法分析、句法分析、语义分析以及语用分析等基本任务,情感倾向分析、文本摘要、对话系统、问答系统、机器翻译等自然语言处理重要应用所要解决的基本问题和难点,以及如何利用机器学习、深度学习等手段求解各种自然语言处理问题。
(三)神经与认知科学导论
本课程是神经认知科学的入门课程,包含了认知心理学、神经科学、计算机科学及其他基础科学等多学科的交叉和融合。首先介绍神经认知科学的基本概念、历史和发展现况,进一步讲解基于认知活动的脑机制,即人类大脑如何调用其各层次上的组件,包括分子、突触、细胞、脑组织区和全脑去实现各种认知活动,最后介绍相关的计算模型和算法。课程将从细胞机制和神经元模型、大脑的结构和功能组织、感知原理及模型、记忆的基础理论及模型、学习机制及学习算法、脉冲神经 络的概念、结构以及应用等方面进行展开,旨在加深同学对认知神经科学的理解。通过对这门课程的学习,学生应该掌握认知神经科学的基本内涵,熟悉借鉴大脑机制的学习、记忆等计算模型及算法,同时启发同学们对人工智能在可解释性、自适应学习和非完备信息推理等基础理论的瓶颈问题的思考。
(四)人工智能安全与治理导论
本课程将对人工智能系统的安全问题、常见的攻防方法以及人工智能技术引起的伦理道德问题进行介绍,同时探讨相应的治理技术。通过本课程的学习,使学生能够了解人工智能技术的安全和伦理问题,并了解相关的治理规范和防御方法,助力人工智能技术的健康发展。
(五)机器人学与智能控制导论
机器人是人工智能的重要载体,机器人学是一门高度交叉的前沿学科。本课程讲解机器人和控制领域基础知识和最新研究成果,主要包括机器人运动学、动力学,基于视觉、激光、超声等多传感器信息的场景感知技术,利用最新的人工智能方法实现机器人智能控制等。
(六)人工智能架构与系统
本课程讲解支持深度学习的计算机系统架构和设计方法,包括人工智能算法硬件加速、软硬件协同智能计算架构、云-边缘-端智能系统、后摩尔时代智能计算发展趋势等。
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!