Principal Component Analysis (PCA) in MATLAB软件

This is a demonstration of how one can use PCA to classify a 2D data set.

软件应用简介

Principal Component Analysis (PCA) in MATLAB软件

This is a demonstration of how one can use PCA to classify a 2D data set. This is the simplest form of PCA but you can easily extend it to higher dimensions and you can do image classification with PCA

PCA consists of a number of steps: 

– Loading the data 

– Subtracting the mean of the data from the original dataset 

– Finding the covariance matrix of the dataset 

– Finding the eigenvector(s) associated with the greatest eigenvalue(s) 

– Projecting the original dataset on the eigenvector(s)

Note: MATLAB has a built-in PCA functions. This file shows how a PCA works

界面展示

Principal Component Analysis (PCA) in MATLAB软件

结果示意

Principal Component Analysis (PCA) in MATLAB软件

规格 价

0元试用
0.0元人民币/月

声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!

上一篇 2022年4月28日
下一篇 2022年4月28日

相关推荐