This is a demonstration of how one can use PCA to classify a 2D data set.
软件应用简介

This is a demonstration of how one can use PCA to classify a 2D data set. This is the simplest form of PCA but you can easily extend it to higher dimensions and you can do image classification with PCA
PCA consists of a number of steps:
– Loading the data
– Subtracting the mean of the data from the original dataset
– Finding the covariance matrix of the dataset
– Finding the eigenvector(s) associated with the greatest eigenvalue(s)
– Projecting the original dataset on the eigenvector(s)
Note: MATLAB has a built-in PCA functions. This file shows how a PCA works
界面展示

结果示意

规格 价
0元试用 |
---|
0.0元人民币/月 |
声明:本站部分文章及图片源自用户投稿,如本站任何资料有侵权请您尽早请联系jinwei@zod.com.cn进行处理,非常感谢!